Issue |
A&A
Volume 546, October 2012
|
|
---|---|---|
Article Number | A24 | |
Number of page(s) | 8 | |
Section | Interstellar and circumstellar matter | |
DOI | https://doi.org/10.1051/0004-6361/201219736 | |
Published online | 28 September 2012 |
High-contrast imaging of the close environment of HD 142527
VLT/NaCo adaptive optics thermal and angular differential imaging⋆,⋆⋆
1 Institut de Planétologie et d’Astrophysique de Grenoble, UJF, CNRS, 414 rue de la piscine, 38400 Saint-Martin d’Hères, France
e-mail: julien.rameau@obs.ujf-grenoble.fr
2 LESIA-Observatoire de Paris, CNRS, UMPC Univ. Paris 6, Univ. Paris 7 Diderot, 92195 Meudon, France
3 European Southern Observatory, Alonso de Cordóva 3107, Vitacura, Santiago, Chile
4 Max-Planck-Institut für Astronomie Königstuhl 17, 69117 Heidelberg, Germany
Received: 1 June 2012
Accepted: 6 August 2012
Context. It has long been suggested that circumstellar disks surrounding young stars may be the signposts of planets, and even more so since the recent discoveries of embedded substellar companions. According to models, the planet-disk interaction may create large structures, gaps, rings, or spirals in the disk. In that sense, the Herbig star HD 142527 is particularly compelling, as its massive disk displays intriguing asymmetries that suggest the existence of a dynamical peturber of unknown nature.
Aims. Our goal was to obtain deep thermal images of the close circumstellar environment of HD 142527 to re-image the reported close-in structures (cavity, spiral arms) of the disk and to search for stellar and substellar companions that could be connected to their presence.
Methods. We obtained high-contrast images with the NaCo adaptive optics system at the Very Large Telescope in L′-band. We applied different analysis strategies using both classical PSF-subtraction and angular differential imaging to probe for any extended structures or point-like sources.
Results. The circumstellar environment of HD 142527 is revealed at an unprecedented spatial resolution down to the subarcsecond level for the first time at 3.8 μm. Our images reveal important radial and azimuthal asymmetries that invalidate an elliptical shape for the disk. It instead suggests a bright inhomogeneous spiral arm plus various fainter spiral arms. We also confirm an inner cavity down to 30 AU and two important dips at position angles of 0 and 135 deg. The detection performance in angular differential imaging enables exploration of the planetary mass regime for projected physical separations as close as 40 AU. Use of our detection map together with Monte Carlo simulations sets stringent constraints on the presence of planetary mass, brown dwarf or stellar companions as a function of the semi-major axis. They severely limit any presence of massive giant planets with semi-major axis beyond 50 AU, i.e. probably within the large disk’s cavity which extends radially up to 145 AU or even farther outside.
Key words: instrumentation: adaptive optics / stars: variables: T Tauri, Herbig Ae/Be / stars: individual: HD 142527 / protoplanetary disks
Based on observations collected at the European Organization for Astronomical Research in the Southern Hemisphere, Chile, ESO: run 087.C-0299A.
Reduced images are only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/546/A24
© ESO, 2012
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.