Issue |
A&A
Volume 545, September 2012
|
|
---|---|---|
Article Number | A53 | |
Number of page(s) | 11 | |
Section | Interstellar and circumstellar matter | |
DOI | https://doi.org/10.1051/0004-6361/201219498 | |
Published online | 06 September 2012 |
Velocity asymmetries in young stellar object jets
Intrinsic and extrinsic mechanisms
1
CEA, IRAMIS, Service Photons, Atomes et
Molécules,
91191
Gif-sur-Yvette
France
e-mail: titos.matsakos@cea.fr
2
IASA & Sect. of Astrophysics, Astronomy and Mechanics,
Dept. of Physics, University of Athens, 15784, Zografos, Athens, Greece
3
LUTh, Observatoire de Paris, UMR 8102 du CNRS, Université Paris
Diderot, 92190
Meudon,
France
4
Laboratoire AIM Paris-Saclay, CEA/Irfu Université Paris-Diderot
CNRS/INSU, 91191
Gif-Sur-Yvette,
France
5
Dipartimento di Fisica, Università degli Studi di
Torino, via Pietro Giuria
1, 10125
Torino,
Italy
6
INAF/Osservatorio Astronomico di Torino, via Osservatorio 20,
10025
Pino Torinese,
Italy
Received:
27
April
2012
Accepted:
30
July
2012
Context. It is well established that some YSO jets (e.g. RW Aur) display different propagation speeds between their blue and red shifted parts, a feature possibly associated with the central engine or the environment in which the jet propagates.
Aims. To understand the origin of asymmetric YSO jet velocities, we investigate the efficiency of two candidate mechanisms, one based on the intrinsic properties of the system and the other on the role of the external medium. In particular, a parallel or anti-parallel configuration between the protostellar magnetosphere and the disk magnetic field is considered, and the resulting dynamics examined both in an ideal and in a resistive magneto-hydrodynamical (MHD) regime. Moreover, we explore the effects of a potential difference in the pressure of the environment, as a consequence of the nonuniform density distribution of molecular clouds.
Methods. Ideal and resistive axisymmetric numerical simulations were carried out for a variety of models, all of which are based on a combination of two analytical solutions, a disk wind and a stellar outflow. The initial two-component jet is modified by either inverting the orientation of its inner magnetic field or imposing a constant surrounding pressure. The velocity profiles are studied by assuming steady flows as well as after strong time variable ejection is incorporated.
Results. Discrepancies between the speeds of the two outflows in opposite directions can indeed occur both due to unaligned magnetic fields and different outer pressures. In the former case, the asymmetry appears only on the dependence of the velocity on the cylindrical distance, but the implied observed value is significantly altered when the density distribution is also taken into account. On the other hand, a nonuniform medium collimates the two jets unevenly, directly affecting their propagation speed. A further interesting feature of the pressure-confined outflow simulations is the formation of static knots whose spacing seems to be associated with the ambient pressure.
Conclusions. Jet velocity asymmetries are anticipated both when multipolar magnetic moments are present in the star-disk system and when nonuniform environments are considered. The latter is an external mechanism that can easily explain the large timescale of the phenomenon, whereas the former naturally relates it to the YSO intrinsic properties.
Key words: magnetohydrodynamics (MHD) / stars: pre-main sequence / stars: winds, outflows / ISM: jets and outflows
© ESO, 2012
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.