Issue |
A&A
Volume 544, August 2012
|
|
---|---|---|
Article Number | A13 | |
Number of page(s) | 14 | |
Section | Stellar structure and evolution | |
DOI | https://doi.org/10.1051/0004-6361/201219156 | |
Published online | 19 July 2012 |
Models of AM Canum Venaticorum star outbursts
1 Astronomical Observatory, Jagiellonian University, ul. Orla 171, 30-244 Kraków, Poland
e-mail: I.Kotko@oa.uj.edu.pl
2 Institut d’Astrophysique de Paris, UMR 7095 CNRS, UPMC Univ Paris 06, 98bis Bd Arago, 75014 Paris, France
3 UJF-Grenoble1/ CNRS-INSU, Institut de Planétologie et d’Astrophysique de Grenoble (IPAG) UMR 5274, 38041 Grenoble, France
4 Observatoire de Strasbourg, CNRS/Université de Strasbourg, 11 rue de l’Université, 67000 Strasbourg, France
Received: 2 March 2012
Accepted: 24 May 2012
Context. Outbursting AM CVn stars exhibit outbursts similar to those observed in different types of dwarf novae. Their light-curves combine the characteristic features of SU UMa, ER UMa, Z Cam, and WZ Sge-type systems but also show a variety of properties never observed in dwarf novae. The compactness of AM CVn orbits and their unusual chemical composition make these systems valuable testbeds for outburst models.
Aims. We aim for a better understanding of the role of helium in the accretion disc instability mechanism, testing the model for dwarf novae outbursts in the case of AM CVn stars, and aim to explain the outburst light-curves of these ultra-compact binaries.
Methods. We calculated the properties of the hydrogen-free AM CVn stars using our previously developed numerical code adapted to the different chemical composition of these systems and supplemented with formulae accounting for mass transfer rate variations, additional sources of the disc heating, and the primary’s magnetic field.
Results. We discovered how helium-dominated discs react to the thermal-viscous instability and were able to reproduce various features of the outburst cycles in the light-curves of AM CVn stars.
Conclusions. The AM CVn outbursts can be explained by the suitably adapted dwarf-nova disc instability model but, as in the case of its application to hydrogen-dominated cataclysmic variables, one has to resort to additional mechanisms to account for the observed superoutbursts, dips, cycling states, and standstills. We show that the enhanced mass-transfer rate, due presumably to variable irradiation of the secondary, must not only be taken into account but is a determining factor that shapes AM CVn star outbursts. The cause of the variable secondary’s irradiation has yet to be understood; the best candidate is the precession of a tilted/warped disc.
Key words: accretion, accretion disks / instabilities / binaries: close / stars: dwarf novae
© ESO, 2012
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.