Issue |
A&A
Volume 543, July 2012
|
|
---|---|---|
Article Number | A66 | |
Number of page(s) | 20 | |
Section | Stellar structure and evolution | |
DOI | https://doi.org/10.1051/0004-6361/201218970 | |
Published online | 27 June 2012 |
Wide-band simultaneous observations of pulsars: disentangling dispersion measure and profile variations
1 Jodrell Bank Centre for Astrophysics, School of Physics and Astronomy, The University of Manchester, Manchester, M13 9PL, UK
e-mail: tomehassall@gmail.com
2 ASTRON, The Netherlands Institute for Radio Astronomy, Postbus 2, 7990 AA Dwingeloo, The Netherlands
3 Astronomical Institute “Anton Pannekoek”, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
4 Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, 53121 Bonn, Germany
5 Astrophysics, University of Oxford, Denys Wilkinson Building, Keble Road, Oxford OX1 3RH, UK
6 Station de Radioastronomie de Nançay, Observatoire de Paris, CNRS/INSU, 18330 Nançay, France
7 Laboratoire de Physique et Chimie de l’Environnement et de l’Espace, LPC2E UMR 7328 CNRS, 45071 Orléans Cedex 02, France
8 School of Physics and Astronomy, University of Southampton, Southampton, SO17 1BJ, UK
9 Sydney Institute for Astronomy, School of Physics, The University of Sydney, NSW 2006, Australia
10 Université Paris 7 Denis Diderot and Service d’Astrophysique, UMR AIM, CEA Saclay, 91191 Gif-sur-Yvette, France
11 Institut Universitaire de France, 75005 Paris, France
12 Department of Physics & Astronomy, University of Sheffield, Sheffield S3 7RH, UK
13 Thüringer Landessternwarte, Sternwarte 5, 07778 Tautenburg, Germany
14 Department of Astrophysics, IMAPP, Radboud University Nijmegen, PO Box 9010, 6500 GL Nijmegen, The Netherlands
15 SRON, Netherlands Institute for Space Research, Sorbonnelaan 2, 3584 CA, Utrecht, The Netherlands
16 Harvard-Smithsonian Center for Astrophysics, Garden Street 60, Cambridge, MA 02138, USA
17 Radio Astronomy Lab, UC Berkeley, CA, USA
18 International Centre for Radio Astronomy Research – Curtin University, GPO Box U1987, Perth, WA 6845, Australia
19 Space Telescope Science Institute, Baltimore, MD 21218, USA
20 Centrum Wiskunde & Informatica (CWI), PO Box 94079, 1090 GB, Amsterdam, The Netherlands
21 Argelander-Institut für Astronomie, Universität Bonn, Auf dem Hügel 71, 53121 Bonn, Germany
22 LESIA, Observatoire de Paris, CNRS, UPMC Université Paris-Diderot, 5 place Jules Janssen, 92195 Meudon, France
23 Max Planck Institute for Astrophysics, Karl Schwarzschild Str. 1, 85741 Garching, Germany
24 Institute for Astronomy, University of Edinburgh, Royal Observatory of Edinburgh, Blackford Hill, Edinburgh EH9 3HJ, UK
25 Jacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany
26 Kapteyn Astronomical Institute, PO Box 800, 9700 AV Groningen, The Netherlands
27 Mt Stromlo Observatory, Research School of Astronomy and Astrophysics, Australian National University, Weston, A.C.T. 2611, Australia
28 Leiden Observatory, Leiden University, PO Box 9513, 2300 RA Leiden, The Netherlands
29 NRAO Headquarters, 520 Edgemont Road, Charlottesville, VA 22903, USA
30 Centre de Recherche Astrophysique de Lyon, Observatoire de Lyon, 9 Av. Charles André, 69561 Saint Genis Laval Cedex, France
31 Leibniz-Institut fr Astrophysik Potsdam (AIP), An der Sternwarte 16, 14482 Potsdam, Germany
32 Center for Information Technology (CIT), University of Groningen, The Netherlands
Received: 6 February 2012
Accepted: 14 April 2012
Dispersion in the interstellar medium is a well known phenomenon that follows a simple relationship, which has been used to predict the time delay of dispersed radio pulses since the late 1960s. We performed wide-band simultaneous observations of four pulsars with LOFAR (at 40–190 MHz), the 76-m Lovell Telescope (at 1400 MHz) and the Effelsberg 100-m Telescope (at 8000 MHz) to test the accuracy of the dispersion law over a broad frequency range. In this paper we present the results of these observations which show that the dispersion law is accurate to better than 1 part in 105 across our observing band. We use this fact to constrain some of the properties of the interstellar medium along the line-of-sight and use the lack of any aberration or retardation effects to determine upper limits on emission heights in the pulsar magnetosphere. We also discuss the effect of pulse profile evolution on our observations, and the implications that it could have for precision pulsar timing projects such as the detection of gravitational waves with pulsar timing arrays.
Key words: pulsars: general / ISM: general / magnetic fields / telescopes
© ESO, 2012
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.