Issue |
A&A
Volume 543, July 2012
|
|
---|---|---|
Article Number | A81 | |
Number of page(s) | 14 | |
Section | Planets and planetary systems | |
DOI | https://doi.org/10.1051/0004-6361/201117615 | |
Published online | 02 July 2012 |
The circumstellar disk of HH 30
Searching for signs of disk evolution with multi-wavelength modeling
1 Christian-Albrechts-Universität zu Kiel, Institut für Theoretische Physik und Astrophysik (ITAP), Leibnizstr. 15, 24118 Kiel, Germany
e-mail: dmadlener@astrophysik.uni-kiel.de; wolf@astrophysik.uni-kiel.de
2 Université de Bordeaux, Observatoire Aquitain des Sciences de l’Univers, 2 rue de l’Observatoire, BP 89, 33271 Floirac Cedex, France
3 CNRS, UMR 5804, Laboratoire d’Astrophysique de Bordeaux, 2 rue de l’Observatoire, BP 89, 33271 Floirac Cedex, France
e-mail: Anne.Dutrey@obs.u-bordeaux1.fr; Stephane.Guilloteau@obs.u-bordeaux1.fr
Received: 30 June 2011
Accepted: 28 April 2012
Context. Circumstellar disks are characteristic for star formation and vanish during the first few Myr of stellar evolution. During this time planets are believed to form in the dense midplane by growth, sedimentation and aggregation of dust. Indicators of disk evolution, such as holes and gaps, can be traced in the spectral energy distribution (SED) and spatially resolved images.
Aims. We aim to construct a self-consistent model of HH 30 by fitting all available continuum observations simultaneously. New data sets not available in previous studies, such as high-resolution interferometric imaging with the Plateau de Bure Interferometer (PdBI) at λ = 1.3 mm and SED measured with IRS on the Spitzer Space Telescope in the mid-infrared, put strong constraints on predictions and are likely to provide new insights into the evolutionary state of this object.
Methods. A parameter study based on simulated annealing was performed to find unbiased best-fit models for independent observations made in the wavelength domain λ ~ 1 μm...4 mm. The method essentially creates a Markov chain through parameter space by comparing predictions generated by our self-consistent continuum radiation transfer code MC3D with observations.
Results. We present models of the edge-on circumstellar disk of HH 30 based on observations from the near-infrared to mm-wavelengths that suggest the presence of an inner depletion zone with ~45 AU radius and a steep decline of mm opacity beyond ≳ 140 AU. Our modeling indicates that several modes of dust evolution such as growth, settling, and radial migration are taking place in this object.
Conclusions. High-resolution observations of HH 30 at different wavelengths with next-generation observatories such as ALMA and JWST will enable the modeling of inhomogeneous dust properties and significantly expand our understanding of circumstellar disk evolution.
Key words: radiative transfer / methods: data analysis / stars: formation / stars: variables: T Tauri, Herbig Ae/Be / stars: individual: HH 30 / protoplanetary disks
© ESO, 2012
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.