Issue |
A&A
Volume 541, May 2012
|
|
---|---|---|
Article Number | A125 | |
Number of page(s) | 10 | |
Section | Atomic, molecular, and nuclear data | |
DOI | https://doi.org/10.1051/0004-6361/201218867 | |
Published online | 11 May 2012 |
Potassium spectra in the 700–7000 cm-1 domain: Transitions involving f-, g-, and h-states
1
J. Heyrovský Institute of Physical Chemistry, Academy of Sciences
of the Czech Republic, Dolejškova
3, 18223
Prague 8, Czech
Republic
e-mail: civis@jh-inst.cas.cz
2
Voronezh State University, 394693
Voronezh,
Russia
Received:
23
January
2012
Accepted:
28
February
2012
Context. The infrared (IR) range is becoming increasingly important to astronomical studies of cool or dust-obscured objects, such as dwarfs, disks, or planets, and in the extended atmospheres of evolved stars. A general drawback of the IR spectral region is the much lower number of atomic lines available (relative to the visible and ultraviolet ranges).
Aims. We attempt to obtain new laboratory spectra to help us identify spectral lines in the IR. This may result in the discovery of new excited atomic levels that are difficult to compute theoretically with high accuracy, hence can be determined solely from IR lines.
Methods. The K vapor was formed through the ablation of the KI (potassium iodide) target by a high-repetition-rate (1.0 kHz) pulsed nanosecond ArF laser (λ = 193 nm, output energy of 15 mJ) in a vacuum (10-2 Torr). The time-resolved emission spectrum of the neutral atomic potassium (K i) was recorded in the 700–7000 cm-1 region using the Fourier transform infrared spectroscopy technique with a resolution of 0.02 cm-1. The f-values calculated in the quantum-defect theory approximation are presented for the transitions involving the reported K i levels.
Results. Precision laboratory measurements are presented for 38 K i lines in the infrared (including 25 lines not measured previously in the laboratory) range using time-resolved Fourier transform infrared spectroscopy. The 6g, 6h, and 7h levels of K i are observed for the first time, in addition to updated energy values of the other 23 K i levels and the f-values for the transitions involving these levels.
Conclusions. The recorded wave numbers are in good agreement with the data from the available solar spectrum atlases. Nevertheless, we correct their identification for three lines (1343.699, 1548.559, and 1556.986 cm-1).
Key words: atomic data / line: identification / methods: laboratory / infrared: general / techniques: spectroscopic
© ESO, 2012
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.