Issue |
A&A
Volume 540, April 2012
|
|
---|---|---|
Article Number | A124 | |
Number of page(s) | 10 | |
Section | Cosmology (including clusters of galaxies) | |
DOI | https://doi.org/10.1051/0004-6361/201118194 | |
Published online | 11 April 2012 |
Does Bose-Einstein condensation of CMB photons cancel μ distortions created by dissipation of sound waves in the early Universe?
1 Max Planck Institut für Astrophysik, Karl-Schwarzschild-Str. 1, 85741 Garching, Germany
e-mail: khatri@mpa-garching.mpg.de
2 Space Research Institute, Russian Academy of Sciences, Profsoyuznaya 84/32, 117997 Moscow, Russia
3 Institute for Advanced Study, Einstein Drive, Princeton, New Jersey 08540, USA
4 Canadian Institute for Theoretical Astrophysics, 60 St George Street, Toronto, ON M5S 3H8, Canada
Received: 3 October 2011
Accepted: 12 February 2012
The difference in the adiabatic indices of photons and non-relativistic baryonic matter in the early Universe causes the electron temperature to be slightly lower than the radiation temperature. Comptonization of photons with colder electrons results in the transfer of energy from photons to electrons and ions, owing to the recoil effect (spontaneous and induced). Thermalization of photons with a colder plasma results in the accumulation of photons in the Rayleigh-Jeans tail, aided by stimulated recoil, while the higher frequency spectrum tries to approach Planck spectrum at the electron temperature Tγfinal = Te < Tγinitial; i.e., Bose-Einstein condensation of photons occurs. We find new solutions of the Kompaneets equation describing this effect. No actual condensate is, in reality, possible since the process is very slow and photons drifting to low frequencies are efficiently absorbed by bremsstrahlung and double Compton processes. The spectral distortions created by Bose-Einstein condensation of photons are within an order of magnitude (for the present range of allowed cosmological parameters), with exactly the same spectrum but opposite in sign, of those created by diffusion damping of the acoustic waves on small scales corresponding to comoving wavenumbers 45 < k < 104 Mpc-1. The initial perturbations on these scales are completely unobservable today due to their being erased completely by Silk damping. There is partial cancellation of these two distortions, leading to suppression of μ distortions expected in the standard model of cosmology. The net distortion depends on the scalar power index ns and its running dns/dlnk, and may vanish for special values of parameters, for example, for a running spectrum with, ns = 1,dns/dlnk = − 0.038. We arrive at an intriguing conclusion: even a null result, non-detection of μ-type distortion at a sensitivity of 10-9, gives a quantitative measure of the primordial small-scale power spectrum.
Key words: radiation mechanisms: thermal / scattering / cosmic background radiation / cosmological parameters / cosmology: theory / early Universe
© ESO, 2012
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.