Issue |
A&A
Volume 540, April 2012
|
|
---|---|---|
Article Number | A49 | |
Number of page(s) | 22 | |
Section | Extragalactic astronomy | |
DOI | https://doi.org/10.1051/0004-6361/201117669 | |
Published online | 23 March 2012 |
Fundamentals of the dwarf fundamental plane⋆
1 York University, Department of Physics and Astronomy, 4700 Keele Street, Toronto, ON, M3J1P3, Canada
e-mail: mccall@yorku.ca
2 Isaac Newton Group of Telescopes, Ap. de correos 321, 38700 Santa Cruz de la Palma, Canary Islands, Spain
e-mail: ovidiuv@ing.iac.es
3 Instituto de Astronomía, Universidad Católica del Norte, Avenida Angamos 0610, Antofagasta, Chile
4 Argelander-Institut für Astronomie, Universität Bonn, Auf dem Hügel 71, 53121 Bonn, Germany
Received: 8 July 2011
Accepted: 27 January 2012
Aims. Star-forming dwarfs are studied to elucidate the physical underpinnings of their fundamental plane. Processes controlling dynamics are evaluated, connections between quiescent and bursting dwarfs are examined, and the viability of using structural properties of dwarfs to determine distances is assessed.
Methods. Deep surface photometry in Ks is presented for 19 star-forming dwarfs. The data are amalgamated with previously published observations to create a sample of 66 galaxies suitable for exploring how global properties and kinematics are connected.
Results. It is confirmed that residuals in the Tully-Fisher relation are correlated with surface brightness, but that even after accomodating the surface brightness dependence through the dwarf fundamental plane, residuals in absolute magnitude are far larger than expected from observational errors. Rather, a morefundamental plane is identified which connects the potential to HI line width and surface brightness. Residuals correlate with the axis ratio in a way which can be accommodated by recognizing the galaxies to be oblate spheroids viewed at varying angles. Correction of surface brightnesses to face-on leads to a correlation among the potential, line width, and surface brightness for which residuals are entirely attributable to observational uncertainties. The mean mass-to-light ratio of the diffuse component of the galaxies is constrained to be 0.88 ± 0.20 in Ks. Blue compact dwarfs lie in the same plane as dwarf irregulars. The dependence of the potential on line width is less strong than expected for virialized systems, but this may be because surface brightness is acting as a proxy for variations in the mass-to-light ratio from galaxy to galaxy. Altogether, the observations suggest that gas motions are predominantly disordered and isotropic, that they are a consequence of gravity, not turbulence, and that the mass and scale of dark matter haloes scale with the amount and distribution of luminous matter. The tight relationship between the potential and observables offers the promise of determining distances to unresolved star-forming dwarfs to an accuracy comparable to that provided by the Tully-Fisher relation for spirals.
Key words: galaxies: dwarf / galaxies: fundamental parameters / galaxies: kinematics and dynamics / galaxies: structure / infrared: galaxies / dark matter
© ESO, 2012
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.