Issue |
A&A
Volume 539, March 2012
|
|
---|---|---|
Article Number | A1 | |
Number of page(s) | 9 | |
Section | The Sun | |
DOI | https://doi.org/10.1051/0004-6361/201118278 | |
Published online | 17 February 2012 |
Lagrangian coherent structures in photospheric flows and their implications for coronal magnetic structure⋆
1 Department of Mathematical Sciences, Durham University, Durham, DH1 3LE, UK
e-mail: anthony.yeates@durham.ac.uk
2 Division of Mathematics, University of Dundee, Dundee, DD1 4HN, UK
e-mail: gunnar@maths.dundee.ac.uk
3 Space Sciences Laboratory, University of California, Berkeley, CA 94720, USA
e-mail: welsch@ssl.berkeley.edu
Received: 14 October 2011
Accepted: 17 December 2011
Aims. We show how the build-up of magnetic gradients in the Sun’s corona may be inferred directly from photospheric velocity data. This enables computation of magnetic connectivity measures such as the squashing factor without recourse to magnetic field extrapolation.
Methods. Assuming an ideal evolution in the corona, and an initially uniform magnetic field, the subsequent field line mapping is computed by integrating trajectories of the (time-dependent) horizontal photospheric velocity field. The method is applied to a 12 h high-resolution sequence of photospheric flows derived from Hinode/SOT magnetograms.
Results. We find the generation of a network of quasi-separatrix layers in the magnetic field, which correspond to Lagrangian coherent structures in the photospheric velocity. The visual pattern of these structures arises primarily from the diverging part of the photospheric flow, hiding the effect of the rotational flow component: this is demonstrated by a simple analytical model of photospheric convection. We separate the diverging and rotational components from the observed flow and show qualitative agreement with purely diverging and rotational models respectively. Increasing the flow speeds in the model suggests that our observational results are likely to give a lower bound for the rate at which magnetic gradients are built up by real photospheric flows. Finally, we construct a hypothetical magnetic field with the inferred topology, that can be used for future investigations of reconnection and energy release.
Key words: magnetic fields / Sun: photosphere / Sun: corona / Sun: magnetic topology
Movies are available in electronic form at http://www.aanda.org
© ESO, 2012
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.