Issue |
A&A
Volume 539, March 2012
|
|
---|---|---|
Article Number | A62 | |
Number of page(s) | 10 | |
Section | Stellar structure and evolution | |
DOI | https://doi.org/10.1051/0004-6361/201117703 | |
Published online | 27 February 2012 |
Finding proto-spectroscopic binaries
Precise multi-epoch radial velocities of seven protostars in ρ Ophiuchus ⋆,⋆⋆
1 Centro de Astrofísica, Universidade do Porto, Rua das Estrelas, 4150-762 Porto, Portugal
2 ESO, Alonso de Cordova 3107, Casilla 19001, Vitacura, Santiago, Chile
e-mail: palmeida@eso.org
3 Departamento Física e Astronomia, Faculdade de Ciências da Universidade do Porto, Portugal
Received: 14 July 2011
Accepted: 22 December 2011
The formation of spectroscopic binaries (SB) may be a natural byproduct of star formation. The early dynamical evolution of multiple stellar systems after the initial fragmentation of molecular clouds leaves characteristic imprints on the properties of young, multiple stars. The discovery and the characterization of the youngest SB will allow us to infer the mechanisms and timescales involved in their formation. Our work aims to find spectroscopic companions around young stellar objects (YSO). We present a near-IR high-resolution (R ~ 60 000) multi-epoch radial velocity survey of seven YSO in the star-forming region (SFR) ρ Ophiuchus. The radial velocities of each source were derived using a two-dimensional cross-correlation function, using the zero-point established by the Earth’s atmosphere as reference. More than 14 spectral lines in the CO Δν = (0−2) bandhead window were used in the cross-correlation against LTE atmospheric models to compute the final results. We found that the spectra of the protostars in our sample agree well with the predicted stellar photospheric profiles, indicating that the radial velocities derived are indeed of stellar nature. Three of the targets analyzed exhibit large radial velocity variations during the three observation epochs. These objects – pending further confirmation and orbital characteristics – may become the first evidence for proto-spectroscopic binaries, and will provide important constraints on their formation. Our preliminary binary fraction (BF) of ~71% (when merging our results with those of previous studies) is in line with the notion that multiplicity is very high at young ages and therefore a byproduct of star formation.
Key words: binaries: close / stars: formation / stars: pre-main sequence / binaries: spectroscopic / stars: protostars
Based on observations collected with the CRIRES spectrograph at the VLT/UT1 8.2-m Antu Telescope (ESO run ID. 081.C-0395(A)) at the Paranal Observatory, Chile.
Table 1 is available in electronic form at http://www.aanda.org
© ESO, 2012
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.