Issue |
A&A
Volume 539, March 2012
|
|
---|---|---|
Article Number | A149 | |
Number of page(s) | 22 | |
Section | Extragalactic astronomy | |
DOI | https://doi.org/10.1051/0004-6361/201117509 | |
Published online | 09 March 2012 |
A multiwavelength view of the flaring state of PKS 2155-304 in 2006⋆
1 Universität Hamburg, Institut für Experimentalphysik, Luruper Chaussee 149, 22761 Hamburg, Germany
2 Laboratoire Univers et Particules de Montpellier, Université Montpellier 2, CNRS/IN2P3, CC 72, Place Eugène Bataillon, 34095 Montpellier Cedex 5, France
3 Max-Planck-Institut für Kernphysik, PO Box 103980, 69029 Heidelberg, Germany
4 Dublin Institute for Advanced Studies, 31 Fitzwilliam Place, Dublin 2, Ireland
5 National Academy of Sciences of the Republic of Armenia, Yerevan
6 Yerevan Physics Institute, 2 Alikhanian Brothers St., 375036 Yerevan, Armenia
7 Universität Erlangen-Nürnberg, Physikalisches Institut, Erwin-Rommel-Str. 1, 91058 Erlangen, Germany
8 Nicolaus Copernicus Astronomical Center, ul. Bartycka 18, 00-716 Warsaw, Poland
9 CEA Saclay, DSM/IRFU, 91191 Gif-Sur-Yvette Cedex, France
10 University of Durham, Department of Physics, South Road, Durham DH1 3LE, UK
11 Astroparticule et Cosmologie (APC), CNRS, Université Paris 7 Denis Diderot, 10, rue Alice Domon et Léonie Duquet, 75205 Paris Cedex 13 ;
UMR 7164: CNRS, Université Paris VII, CEA, Observatoire de Paris, France
12 Laboratoire Leprince-Ringuet, Ecole Polytechnique, CNRS/IN2P3, 91128 Palaiseau, France
13 Institut für Theoretische Physik, Lehrstuhl IV: Weltraum und Astrophysik, Ruhr-Universität Bochum, 44780 Bochum, Germany
14 Landessternwarte, Universität Heidelberg, Königstuhl, 69117 Heidelberg, Germany
15 Institut für Physik, Humboldt-Universität zu Berlin, Newtonstr. 15, 12489 Berlin, Germany
16 LUTH, Observatoire de Paris, CNRS, Université Paris Diderot, 5 Place Jules Janssen, 92195 Meudon, France
e-mail: andreas.zech@obspm.fr; catherine.boisson@obspm.fr
17 LPNHE, Université Pierre et Marie Curie Paris 6, Université Denis Diderot Paris 7, CNRS/IN2P3, 4 Place Jussieu, 75252 Paris Cedex 5, France
18 Institut für Astronomie und Astrophysik, Universität Tübingen, Sand 1, 72076 Tübingen, Germany
19 Astronomical Observatory, The University of Warsaw, Al. Ujazdowskie 4, 00-478 Warsaw, Poland
20 Unit for Space Physics, North-West University, Potchefstroom 2520, South Africa
21 Laboratoire d’Annecy-le-Vieux de Physique des Particules, Université de Savoie, CNRS/IN2P3, 74941 Annecy-le-Vieux, France
22 Oskar Klein Centre, Department of Physics, Stockholm University, Albanova University Center, 10691 Stockholm, Sweden
23 University of Namibia, Department of Physics, Private Bag 13301, Windhoek, Namibia
24 UJF-Grenoble 1, CNRS-INSU, Institut de Plantologie et d’Astrophysique de Grenoble (IPAG), UMR 5274, 38041 Grenoble, France
25 Department of Physics and Astronomy, The University of Leicester, University Road, Leicester, LE1 7RH, UK
26 Instytut Fizyki Jądrowej PAN, ul. Radzikowskiego 152, 31-342 Kraków, Poland
27 Institut für Astro- und Teilchenphysik, Leopold-Franzens-Universität Innsbruck, 6020 Innsbruck, Austria
28 Obserwatorium Astronomiczne, Uniwersytet Jagielloński, ul. Orla 171, 30-244 Kraków, Poland
29 Toruń Centre for Astronomy, Nicolaus Copernicus University, ul. Gagarina 11, 87-100 Toruń, Poland
30 School of Chemistry & Physics, University of Adelaide, 5005 Adelaide, Australia
31 Charles University, Faculty of Mathematics and Physics, Institute of Particle and Nuclear Physics, V Holešovičkách 2, 180 00 Prague 8, Czech Republic
32 School of Physics & Astronomy, University of Leeds, Leeds LS2 9JT, UK
33 European Associated Laboratory for Gamma-Ray Astronomy, jointly supported by CNRS and MPG
34 Oskar Klein Centre, Department of Physics, Royal Institute of Technology (KTH), Albanova, 10691 Stockholm, Sweden
35 LESIA, Observatoire de Paris, CNRS, UPMC, Université Paris-Diderot, Station de radioastronomie de Nançay, 5 pl. Jules Janssen, 92195 Meudon, France
36 Universitat de Valencia, Poligono la Coma s/n, Paterna, 46980 Valencia, Spain
37 College of Engineering, Mathematical & Physical Sciences, School of Physics, UCD Science Centre, Belfield, Dublin 4, Irlande
38 Bronberg Observatory, CBA Pretoria, PO Box 11426, Tiegerpoort 0056, South Africa
39 Hartebeesthoek Radio Astronomy Observatory (HartRAO), PO Box 443, 1740 Krugersdorp, South Africa
40 CSIRO Australia Telescope National Facility, Locked Bag 194, 2390 Narrabri NSW, Australia
41 GEPI, Observatoire de Paris, CNRS, Station de radioastronomie de Nançay, 5 pl. Jules Janssen, 92195 Meudon, France
Received: 17 June 2011
Accepted: 16 January 2012
Context. Multiwavelength (MWL) observations of the blazar PKS 2155-304 during two weeks in July and August 2006, the period when two exceptional flares at very high energies (VHE, E ≳ 100 GeV) occurred, provide a detailed picture of the evolution of its emission. The complete data set from this campaign is presented, including observations in VHE γ-rays (H.E.S.S.), X-rays (RXTE, Chandra, Swift XRT), optical (Swift UVOT, Bronberg, Watcher, ROTSE), and in the radio band (NRT, HartRAO, ATCA). Optical and radio light curves from 2004 to 2008 are compared to the available VHE data from this period, to put the 2006 campaign into the context of the long-term evolution of the source.
Aims. The data set offers a close view of the evolution of the source on different time scales and yields new insights into the properties of the emission process. The predictions of synchrotron self-Compton (SSC) scenarios are compared to the MWL data, with the aim of describing the dominant features in the data down to the hour time scale.
Methods. The spectral variability in the X-ray and VHE bands is explored and correlations between the integral fluxes at different wavelengths are evaluated. SSC modelling is used to interpret the general trends of the varying spectral energy distribution.
Results. The X-ray and VHE γ-ray emission are correlated during the observed high state of the source, but show no direct connection with longer wavelengths. The long-term flux evolution in the optical and radio bands is found to be correlated and shows that the source reaches a high state at long wavelengths after the occurrence of the VHE flares. Spectral hardening is seen in the Swift XRT data.
Conclusions. The nightly averaged high-energy spectra of the non-flaring nights can be reproduced by a stationary one-zone SSC model, with only small variations in the parameters. The spectral and flux evolution in the high-energy band during the night of the second VHE flare is modelled with multi-zone SSC models, which can provide relatively simple interpretations for the hour time-scale evolution of the high-energy emission, even for such a complex data set. For the first time in this type of source, a clear indication is found for a relation between high activity at high energies and a long-term increase in the low frequency fluxes.
Key words: galaxies: active / radiation mechanisms: non-thermal / gamma rays: galaxies / BL Lacertae objects: individual: PKS 2155-304
Multiwavelength data is available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/539/A149
© ESO, 2012
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.