Issue |
A&A
Volume 537, January 2012
|
|
---|---|---|
Article Number | A83 | |
Number of page(s) | 13 | |
Section | Galactic structure, stellar clusters and populations | |
DOI | https://doi.org/10.1051/0004-6361/201016355 | |
Published online | 13 January 2012 |
Abundance analysis of the outer halo globular cluster Palomar 14⋆,⋆⋆
1
Zentrum für Astronomie der Universität Heidelberg,
Landessternwarte, Königstuhl 12,
69117
Heidelberg,
Germany
e-mail: nchristlieb@lsw.uni-heidelberg.de, scaliskan@lsw.uni-heidelberg.de
2
Department of Astronomy and Space Sciences, Ankara
University, 06100
Tandoğan, Ankara,
Turkey
e-mail: scaliskan@lsw.uni-heidelberg.de
3
Zentrum für Astronomie der Universität Heidelberg, Astronomisches
Rechen-Institut, Mönchhofstr.
12–14, 69120
Heidelberg,
Germany
e-mail: grebel@ari.uni-heidelberg.de
Received: 17 December 2010
Accepted: 14 October 2011
We determine the elemental abundances of nine red giant stars belonging to Palomar 14 (Pal 14). Pal 14 is an outer halo globular cluster (GC) at a distance of ~70 kpc. Our abundance analysis is based on high-resolution spectra and one-dimensional stellar model atmospheres. We derived the abundances for the iron peak elements Sc, V, Cr, Mn, Co, Ni, the α-elements O, Mg, Si, Ca, Ti, the light odd element Na, and the neutron-capture elements Y, Zr, Ba, La, Ce, Nd, Eu, Dy, and Cu. Our data do not permit us to investigate light element (i.e., O to Mg) abundance variations. The neutron-capture elements show an r-process signature. We compare our measurements with the abundance ratios of inner and other outer halo GCs, halo field stars, GCs of recognized extragalactic origin, and stars in dwarf spheroidal galaxies (dSphs). The abundance pattern of Pal 14 is almost identical to those of Pal 3 and Pal 4, the next distant members of the outer halo GC population after Pal 14. The abundance pattern of Pal 14 is also similar to those of the inner halo GCs, halo field stars, and GCs of recognized extragalactic origin, but differs from what is customarily found in dSphs field stars. The abundance properties of Pal 14, as well as those of the other outer halo GCs, are thus compatible with an accretion origin from dSphs. Whether or not GC accretion played a role, it seems that the formation conditions of outer halo GCs and GCs in dSphs were similar.
Key words: stars: abundances / Galaxy: halo / globular clusters: individual: Pal 14
Based on observations collected at the European Southern Observatory, Chile (Program IDs 077.B-0769).
Tables A.1 and A.2 are only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/537/A83
© ESO, 2012
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.