Issue |
A&A
Volume 535, November 2011
|
|
---|---|---|
Article Number | A94 | |
Number of page(s) | 14 | |
Section | Planets and planetary systems | |
DOI | https://doi.org/10.1051/0004-6361/201117734 | |
Published online | 17 November 2011 |
Tidal evolution of planets around brown dwarfs
1 Université de Bordeaux, Observatoire Aquitain des Sciences de l’Univers, 2 rue de l’Observatoire, BP 89, 33271 Floirac Cedex, France
e-mail: emeline.bolmont@obs.u-bordeaux1.fr
2 CNRS, UMR 5804, Laboratoire d’Astrophysique de Bordeaux, 2 rue de l’Observatoire, BP 89, 33271 Floirac Cedex, France
3 École Normale Supérieure de Lyon, CRAL (CNRS), Université de Lyon, 46 allée d’Italie, 69007 Lyon, France
Received: 20 July 2011
Accepted: 9 September 2011
Context. The tidal evolution of planets orbiting brown dwarfs (BDs) presents an interesting case study because BDs’ terrestrial planet forming region is located extremely close-in. In fact, the habitable zones of BDs range from roughly 0.001 to 0.03 AU and for the lowest-mass BDs are located interior to the Roche limit.
Aims. In contrast with stars, BDs spin up as they age. Thus, the corotation distance moves inward. This has important implications for the tidal evolution of planets around BDs.
Methods. We used a standard equilibrium tidal model to compute the orbital evolution of a large ensemble of planet-BD systems. We tested the effect of numerous parameters such as the initial semi-major axis and eccentricity, the rotation period of the BD, the masses of both the BD and planet, and the tidal dissipation factors.
Results. We find that all planets that form at or beyond the corotation distance and with initial eccentricities smaller than ~0.1 are repelled from the BD. Some planets initially interior to corotation can survive if their inward tidal evolution is slower than the BD’s spin evolution, but most initially close-in planets fall onto the BD.
Conclusions. We find that the most important parameter for the tidal evolution is the initial orbital distance with respect to the corotation distance. Some planets can survive in the habitable zone for Gyr timescales, although in many cases the habitable zone moves inward past the planet’s orbit in just tens to hundreds of Myr. Surviving planets can have orbital periods of less than 10 days (as small as 10 h), so they could be observable by transit.
Key words: brown dwarfs / stars: rotation / planets and satellites: dynamical evolution and stability / planet-star interactions / astrobiology
© ESO, 2011
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.