Issue |
A&A
Volume 533, September 2011
|
|
---|---|---|
Article Number | A107 | |
Number of page(s) | 17 | |
Section | Stellar atmospheres | |
DOI | https://doi.org/10.1051/0004-6361/200912442 | |
Published online | 12 September 2011 |
Structure of the outer layers of cool standard stars⋆
1
Instituut voor Sterrenkunde, Department of Physics and
Astronomy, K.U. Leuven,
Celestijnenlaan 200D, 3001
Leuven,
Belgium
e-mail: Leen.Decin@ster.kuleuven.be
2
Sterrenkundig Instituut Anton Pannekoek, University of
Amsterdam, Kruislaan 403
1098
Amsterdam, The
Netherlands
3
Department of Astronomy and Space Physics, Uppsala
University, Box
515, 751 20
Uppsala,
Sweden
4
NRAO PO Box O, Socorro
NM, 87801, USA
5
Jet Propulsion Laboratory/California Institute of
Technology, MS 169-506, 4800 Oak
Grove Dr., Pasadena, CA
91109,
USA
6
IPAC/Caltech, MS 100-22, Pasadena, CA
91125,
USA
Received: 7 May 2011
Accepted: 19 April 2011
Context. Among late-type red giants, an interesting change occurs in the structure of the outer atmospheric layers as one moves to later spectral types in the Hertzsprung-Russell diagram: a chromosphere is always present, but the coronal emission diminishes and a cool massive wind steps in.
Aims. Where most studies have focussed on short-wavelength observations, this article explores the influence of the chromosphere and the wind on long-wavelength photometric measurements. The goal of this study is to assess wether a set of standard near-infrared calibration sources are fiducial calibrators in the far-infrared, beyond 50 μm.
Methods. The observational spectral energy distributions were compared with the theoretical model predictions for a sample of nine K- and M-giants. The discrepancies found are explained using basic models for flux emission originating in a chromosphere or an ionised wind.
Results. For seven out of nine sample stars, a clear flux excess is detected at (sub)millimetre and/or centimetre wavelengths, while only observational upper limits are obtained for the other two. The precise start of the excess depends upon the star under consideration. For six sources the flux excess starts beyond 210 μm and they can be considered as fiducial calibrators for Herschel/PACS (60–210 μm). Out of this sample, four sources show no flux excess in the Herschel/SPIRE wavelength range (200–670 μm) and are good calibration sources for this instrument as well. The flux at wavelengths shorter than ~1 mm is most likely dominated by an optically thick chromosphere, where an optically thick ionised wind is the main flux contributor at longer wavelengths.
Conclusions. Although the optical to mid-infrared spectrum of the studied K- and M-type infrared standard stars is represented well by a radiative equilibrium atmospheric model, a chromosphere and/or ionised stellar wind at higher altitudes dominates the spectrum in the (sub)millimetre and centimetre wavelength ranges. The presence of a flux excess has implications on the role of the stars as fiducial spectrophotometric calibrators in these wavelength ranges.
Key words: stars: chromospheres / stars: late-type / stars: winds, outflows / radio continuum: stars
Appendix A is available in electronic form at http:www.aanda.org
© ESO, 2011
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.