Issue |
A&A
Volume 532, August 2011
|
|
---|---|---|
Article Number | A6 | |
Number of page(s) | 18 | |
Section | Planets and planetary systems | |
DOI | https://doi.org/10.1051/0004-6361/201116594 | |
Published online | 12 July 2011 |
Estimation of the XUV radiation onto close planets and their evaporation⋆
1
Departamento de Astrofísica, Centro de Astrobiología (CSIC-INTA), ESAC Campus, PO Box 78, 28691 Villanueva de la Cañada, Madrid, Spain
e-mail: jsanz@cab.inta-csic.es
2
INAF – Osservatorio Astronomico di Palermo G. S. Vaiana, Piazza del Parlamento, 1, 90134, Palermo, Italy
3
Institut de Ciènces de l’Espai (CSIC-IEEC), Campus UAB, Fac. de Ciències, Torre C5-parell-2ª planta, 08193 Bellaterra, Spain
4
XMM-Newton SOC, European Space Agency, ESAC, Apartado 78, 28691 Villanueva de la Cañada, Madrid, Spain
5
Dpto. de Física Teórica, C-XI, Facultad de Ciencias, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
6
Spanish Virtual Observatory, Centro de Astrobiología (CSIC-INTA), ESAC Campus, Madrid, Spain
7
Instituto de Astrofísica de Canarias, 38205 La Laguna, Spain
8
Grantecan CALP, 38712 Breña Baja, La Palma, Spain
Received: 27 January 2011
Accepted: 1 May 2011
Context. The current distribution of planet mass vs. incident stellar X-ray flux supports the idea that photoevaporation of the atmosphere may take place in close-in planets. Integrated effects have to be accounted for. A proper calculation of the mass loss rate through photoevaporation requires the estimation of the total irradiation from the whole XUV (X-rays and extreme ultraviolet, EUV) range.
Aims. The purpose of this paper is to extend the analysis of the photoevaporation in planetary atmospheres from the accessible X-rays to the mostly unobserved EUV range by using the coronal models of stars to calculate the EUV contribution to the stellar spectra. The mass evolution of planets can be traced assuming that thermal losses dominate the mass loss of their atmospheres.
Methods. We determine coronal models for 82 stars with exoplanets that have X-ray observations available. Then a synthetic spectrum is produced for the whole XUV range (~1−912 Å). The determination of the EUV stellar flux, calibrated with real EUV data, allows us to calculate the accumulated effects of the XUV irradiation on the planet atmosphere with time, as well as the mass evolution for planets with known density.
Results. We calibrate for the first time a relation of the EUV luminosity with stellar age valid for late-type stars. In a sample of 109 exoplanets, few planets with masses larger than ~1.5 MJ receive high XUV flux, suggesting that intense photoevaporation takes place in a short period of time, as previously found in X-rays. The scenario is also consistent with the observed distribution of planet masses with density. The accumulated effects of photoevaporation over time indicate that HD 209458b may have lost 0.2 MJ since an age of 20 Myr.
Conclusions. Coronal radiation produces rapid photoevaporation of the atmospheres of planets close to young late-type stars. More complex models are needed to explain the observations fully. Spectral energy distributions in the XUV range are made available for stars in the sample through the Virtual Observatory for the use in future planet atmospheric models.
Key words: planetary systems / stars: coronae / astrobiology / X-rays: stars
Appendices and Tables 3 and 4 are available in electronic form at http://www.aanda.org
© ESO, 2011
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.