Issue |
A&A
Volume 532, August 2011
|
|
---|---|---|
Article Number | A26 | |
Number of page(s) | 43 | |
Section | Astrophysical processes | |
DOI | https://doi.org/10.1051/0004-6361/201016134 | |
Published online | 14 July 2011 |
The near-infrared spectral index of Sagittarius A* derived from Ks- and H-band flare statistics⋆
1
I. Physikalisches Institut, Universität zu Köln,
Zülpicher Str.77, 50937
Köln, Germany
e-mail: mbremer@ph1.uni-koeln.de,
witzel@ph1.uni-koeln.de, eckart@ph1.uni-koeln.de
2
Max-Planck-Institut für Radioastronomie,
Auf dem Hügel 69, 53121
Bonn,
Germany
3
Instituto de Astrofísica de Andalucía (CSIC),
Glorieta de la Astronomía S/N,
18008
Granada,
Spain
e-mail: rainer@iaa.es
4
Institut für Theoretische Physik und Astrophysik der Universität
zu Kiel, Germany
Received:
12
November
2010
Accepted:
7
February
2011
Context. The near-infrared (NIR) counterpart of Sagittarius A* (SgrA*) at the position of the 4 × 106 M⊙ supermassive black hole at the center of the Milky Way has strongly varying flux densities. The broad-band near-infrared spectral index is an essential parameter to determine the underlying emission mechanism for the observed flare emission.
Aims. We present a method to derive the NIR spectral index of SgrA* between the H- and Ks-band from the statistics of the observed flare emission. Our spectral index derivation is therefore based on an unprecedentedly large timebase of about seven years of monitoring the infrared counterpart of SgrA*.
Methods. We examined NIR light curves of SgrA* in the H- and Ks-band and established flare number distributions as a function of peak flare flux. We assume that in both bands the same optically thin dominant emission mechanism is at work and produces similar number distributions of flares. We cross-correlated these histograms and determined a statistical expectation value of the H-Ks-band spectral index during the bright phases of SgrA*.
Results. With this new method, we can independently confirm that the expectation value of the spectral index for brighter flares is consistent with α = −0.7 (with the flux density (Fν ∝ ν+α)) which is expected for pure synchrotron radiation. We find a tendency for weaker flares to exhibit a steeper spectrum.
Conclusions. We conclude that the distribution of spectral indices as a function of Ks-band flux density can successfully be described by an exponential cutoff proportional to exp [−(ν/ν0)0.5] because of synchrotron losses, with ν0 being a characteristic cutoff frequency. Varying ν0 between the NIR and sub-mm domain and assuming a sub-mm flux density variation of about one Jansky and optically thin spectral indices of α = −0.7 ± 0.3 explains the observed spectral properties of SgrA* in the NIR.
Key words: black hole physics / infrared: general / accretion, accretion disks / Galaxy: center / Galaxy: nucleus
Appendices are available in electronic form at http://www.aanda.org
© ESO, 2011
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.