Issue |
A&A
Volume 531, July 2011
|
|
---|---|---|
Article Number | A58 | |
Number of page(s) | 11 | |
Section | Stellar structure and evolution | |
DOI | https://doi.org/10.1051/0004-6361/201116843 | |
Published online | 13 June 2011 |
New X-ray observations of IQ Aurigae and α2 Canum Venaticorum
Probing the magnetically channeled wind shock model in A0p stars
Hamburger Sternwarte, Universität Hamburg,
Gojenbergsweg 112,
21029
Hamburg,
Germany
e-mail: jrobrade@hs.uni-hamburg.de
Received:
7
March
2011
Accepted:
11
May
2011
Aims. We re-examine the scenario of X-ray emission from magnetically confined/channeled wind shocks (MCWS) for Ap/Bp stars, a model originally developed to explain the ROSAT detection of the A0p star IQ Aur.
Methods. We present new X-ray observations of the A0p stars α2 CVn (Chandra) and IQ Aur (XMM-Newton) and discuss our findings in the context of X-ray generating mechanisms of magnetic, chemically peculiar intermediate mass stars.
Results. The X-ray luminosities of IQ Aur with log LX = 29.6 erg s-1 and α2 CVn with log LX ≲ 26.0 erg s-1 differ by at least three orders of magnitude, although both are A0p stars. By studying a sample of comparison stars, we find that X-ray emission is preferably generated by more massive objects such as IQ Aur. Besides a strong, cool plasma component, significant amounts of hot (>10 MK) plasma are present during the quasi-quiescent phase of IQ Aur; moreover, diagnostics of the UV sensitive f/i line ratio in He-like O vii triplet point to X-ray emitting regions well above the stellar surface of IQ Aur. In addition we detect a large flare from IQ Aur with temperatures up to ~100 MK and a peak X-ray luminosity of log LX ≈ 31.5 erg s-1. The flare, showing a fast rise and e-folding decay time of less than half an hour, originates in a fairly compact structure and is accompanied by a significant metallicity increase. The X-ray properties of IQ Aur cannot be described by wind shocks only and require the presence of magnetic reconnection. This is most evident in the, to our knowledge, first X-ray flare reported from an A0p star.
Conclusions. Our study indicates that the occurrence the of X-ray emission in A0p stars generated by magnetically channeled wind shocks depends on stellar properties such as luminosity, which promote a high mass loss rate, whereas magnetic field configuration and transient phenomena refine their appearance. While we cannot rule out unknown close companions, the X-ray emission from IQ Aur can be described consistently in the MCWS scenario, in which the very strong magnetic confinement of the stellar wind has led to the build-up of a rigidly rotating disk around the star, where magnetic reconnection and centrifugal breakout events occur.
Key words: stars: activity / stars: chemically peculiar / stars: individual:α2CVn / stars: individual: IQ Aur / X-rays: stars
© ESO, 2011
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.