Issue |
A&A
Volume 531, July 2011
|
|
---|---|---|
Article Number | A59 | |
Number of page(s) | 7 | |
Section | Astrophysical processes | |
DOI | https://doi.org/10.1051/0004-6361/201015549 | |
Published online | 13 June 2011 |
Confronting the models of 3:2 quasiperiodic oscillations with the rapid spin of the microquasar GRS 1915+105
Institute of Physics, Faculty of Philosophy and Science, Silesian
University in Opava, Bezručovo nám.
13, 74601
Opava, Czech
Republic
e-mail: terek@volny.cz
Received: 8 August 2010
Accepted: 5 March 2011
Spectral fitting of the spin a ≡ cJ/GM2 in the microquasar GRS 1915+105 estimate values higher than a = 0.98. However, there are certain doubts about this (nearly) extremal number. Confirming a high value of a > 0.9 would have significant concequences for the theory of high-frequency quasiperiodic oscillations (HF QPOs). Here we discuss its possible implications assuming several commonly used orbital models of 3:2 HF QPOs. We show that the estimate of a > 0.9 is almost inconsistent with two hot-spot (relativistic precession and tidal disruption) models and the warped disc resonance model. In contrast, we demonstrate that the epicyclic resonance and discoseismic models assuming the c- and g-modes are favoured. We extend our discussion to another two microquasars that display the 3:2 HF QPOs. The frequencies of these QPOs scale roughly inversely to the microquasar masses, and the differences in the individual spins, such as a = 0.9 compared to a = 0.7, represent a generic problem for most of the discussed geodesic 3:2 QPO models. To explain the observations of all the three microquasars by one unique mechanism, the models would have to accommodate very large non-geodesic corrections.
Key words: X-rays: binaries / black hole physics / accretion, accretion disks
© ESO, 2011
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.