Issue |
A&A
Volume 530, June 2011
|
|
---|---|---|
Article Number | A130 | |
Number of page(s) | 9 | |
Section | The Sun | |
DOI | https://doi.org/10.1051/0004-6361/201016278 | |
Published online | 24 May 2011 |
Quasi-ballistic and superdiffusive transport for impulsive solar particle events
Department of PhysicsUniversity of Calabria, Rende, Italy
e-mail: etrotta@thematica.it; zimbardo@fis.unical.it
Received: 7 December 2010
Accepted: 10 March 2011
Context. The propagation of solar energetic particles encompasses a number of transport regimes, which goes from diffusive transport to scatter-free propagation. On the other hand, numerical simulations in the presence of magnetic turbulence, as well as the analysis of propagating particles accelerated at interplanetary shocks, show that superdiffusive regimes, which are intermediate between scatter free and diffusive propagation, can be found.
Aims. In this work we study both proton and electron transport in order to understand whether both superdiffusive and ballistic propagation are indeed possible, at variance with the standard paradigm.
Methods. We carry out an analysis of impulsive solar energetic particles (SEPs) events, for which the observed time profile of energetic particle fluxes represents the propagator of the corresponding transport equation. Time profiles are fitted by power laws. Assuming well-known forms of the particle propagator, with power-law asymptotic behaviour, we determine the transport regime of particle propagation from the time profiles.
Results. Using data obtained from ACE and SoHO spacecraft, several proton and electron events that exhibit both superdiffusive and ballistic transport will be shown. When these anomalous regimes are found, no finite mean free path can be defined.
Key words: Sun: corona / Sun: particle emission / diffusion / solar wind / turbulence / Sun: flares
© ESO, 2011
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.