Issue |
A&A
Volume 530, June 2011
|
|
---|---|---|
Article Number | A66 | |
Number of page(s) | 11 | |
Section | Stellar atmospheres | |
DOI | https://doi.org/10.1051/0004-6361/200913827 | |
Published online | 11 May 2011 |
Beryllium abundances in stars with planets
Extending the sample⋆
1
Centre for Astrophysics Research, Science and Technology Research Institute, University of Hertfordshire, Hatfield AL10 9AB, UK
e-mail: M.Galvez-Ortiz@herts.ac.uk
2
Instituto de Astrofísica de Canarias, 38200 La Laguna, Tenerife, Spain
3
Dpto. de Astrofísica y Ciencias de la Atmósfera, Facultad de Ciencias Físicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
4
Centro de Astrofísica, Universidade do Porto, Rua das Estrelas, 4150-762 Porto, Portugal
5 Consejo Superior de Investigaciones Científicas, Spain
Received: 8 December 2009
Accepted: 31 March 2011
Context. Chemical abundances of light elements such as beryllium in planet-host stars allow us to study the planet formation scenarios and/or investigate possible surface pollution processes.
Aims. We present here an extension of previous beryllium abundance studies. The complete sample consists of 70 stars that host planets and 30 stars without known planetary companions. The aim of this paper is to further assess the trends found in previous studies with fewer objects. This will provide more information on the processes of depletion and mixing of light elements in the interior of late-type stars, and will provide possible explanations for the abundance differences between stars that host planets and “single” stars.
Methods. Using high-resolution UVES spectra, we measure beryllium abundances of 26 stars that host planets and one “single” star mainly using the λ 3131.065 Å Be ii line, by fitting synthetic spectra to the observational data. We also compile beryllium abundance measurements of 44 stars hosting planets and 29 “single” stars from the literature, resulting in a final sample of 100 objects.
Results. We confirm that the beryllium content is roughly the same in stars hosting planets and in “single” stars at temperatures Teff ≳ 5700 K. The sample is still small for Teff ≲ 5500 K, but it seems that the scatter in Be abundances of dwarf stars is slightly higher at these cooler temperatures.
Conclusions. We search for distinctive characteristics of planet hosts through correlations of Be abundance versus Li abundance, age, metallicity, and oxygen abundance. These could provide some insight into the formation and evolution of planetary systems, but we did not find any clear correlation.
Key words: stars: abundances / stars: fundamental parameters / planetary systems / planets and satellites: formation / stars: atmospheres
© ESO, 2011
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.