Issue |
A&A
Volume 527, March 2011
|
|
---|---|---|
Article Number | A102 | |
Number of page(s) | 10 | |
Section | Astronomical instrumentation | |
DOI | https://doi.org/10.1051/0004-6361/201015779 | |
Published online | 02 February 2011 |
Feasibility and performances of compressed sensing and sparse map-making with Herschel/PACS data
1
SAp/Irfu/DSM/CEA, Centre d’Études de Saclay,
Orme des Merisiers, Bât.
709,
91191
Gif sur Yvette,
France
e-mail: nicolas.barbey@cea.fr
2
University of Vienna, Department of Astronomy,
Türkenschanzstr. 17,
1180
Wien,
Austria
Received: 17 September 2010
Accepted: 2 December 2010
The Herschel Space Observatory of ESA was launched in May 2009 and has been in operation ever since. From its distant orbit around L2, it needs to transmit a huge quantity of information through a very limited bandwidth. This is especially true for the PACS imaging camera, which needs to compress its data far more than what can be achieved with lossless compression. This is currently solved by including lossy averaging and rounding steps onboard. Recently, a new theory called compressed sensing has emerged from the statistics community. This theory makes use of the sparsity of natural (or astrophysical) images to optimize the acquisition scheme of the data needed to estimate those images. Thus, it can lead to high compression factors.
A previous article by Bobin et al. (2008, IEEE J. Selected Topics Signal Process., 2, 718) has shown how the new theory could be applied to simulated Herschel/PACS data to solve the compression requirement of the instrument. In this article, we show that compressed sensing theory can indeed be successfully applied to actual Herschel/PACS data and significantly improves over the standard pipeline. To fully use the redundancy present in the data, we perform a full sky-map estimation and decompression at the same time, which cannot be done in most other compression methods. We also demonstrate that the various artifacts affecting the data (pink noise and glitches, whose behavior is a priori not very compatible with compressed sensing) can also be handled in this new framework. Finally, we compare the methods from the compressed sensing scheme and data acquired with the standard compression scheme. We discuss improvements that can be made on Earth for the creation of sky maps from the data.
Key words: instrumentation: photometers / methods: numerical / infrared: general / methods: observational
© ESO, 2011
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.