Issue |
A&A
Volume 527, March 2011
|
|
---|---|---|
Article Number | A109 | |
Number of page(s) | 39 | |
Section | Extragalactic astronomy | |
DOI | https://doi.org/10.1051/0004-6361/201015217 | |
Published online | 04 February 2011 |
Modelling the spectral energy distribution of galaxies⋆,⋆⋆,⋆⋆⋆
V. The dust and PAH emission SEDs of disk galaxies
1
Jeremiah Horrocks Institute for Astrophysics and Supercomputing, University
of Central Lancashire,
PR1 2HE,
Preston,
UK
e-mail: cpopescu@uclan.ac.uk
2
Max Planck Institut für Kernphysik, Saupfercheckweg 1, 69117
Heidelberg,
Germany
e-mail: Richard.Tuffs@mpi-hd.mpg.de
3
Research School of Astronomy & Astrophysics, The
Australian National University, Cotter Road, Weston
Creek
ACT
2611,
Australia
4
University of Crete, Physics Department and Institute of
Theoretical and Computational Physics, 71003 Heraklion, Crete, Greece
5
Foundation for Research and Technology - Hellas, 71110 Heraklion, Crete,
Greece
6
Observatories of the Carnegie Institution of Washington, 813 Santa Barbara
Street, Pasadena,
CA
91101,
USA
Received:
16
June
2010
Accepted:
12
November
2010
We present a self-consistent model of the spectral energy distributions (SEDs) of spiral galaxies from the ultraviolet (UV) to the mid-infrared (MIR)/far-infrared (FIR)/submillimeter (submm) based on a full radiative transfer calculation of the propagation of starlight in galaxy disks. This model predicts not only the total integrated energy absorbed in the UV/optical and re-emitted in the infrared/submm, but also the colours of the dust emission based on an explicit calculation of the strength and colour of the UV/optical radiation fields heating the dust, and incorporating a full calculation of the stochastic heating of small dust grains and PAH molecules.
The geometry of the translucent components of the model is empirically constrained using the results from the radiation transfer analysis of Xilouris et al. on spirals in the middle range of the Hubble sequence, while the geometry of the optically thick components is constrained from physical considerations with a posteriori checks of the model predictions with observational data. Following the observational constraints, the model has both a distribution of diffuse dust associated with the old and young disk stellar populations as well as a clumpy component arising from dust in the parent molecular clouds in star forming regions. In accordance with the fragmented nature of dense molecular gas in typical star-forming regions, UV light from massive stars is allowed to either freely stream away into the diffuse medium in some fraction of directions or be geometrically blocked and locally absorbed in clumps.
These geometrical constraints enable the dust emission to be predicted in terms of a
minimum set of free parameters: the central face-on dust opacity in the
B-band , a clumpiness
factor F for the star-forming regions, the star-formation rate
SFR, the normalised luminosity of the old stellar population
old and the bulge-to-disk ratio
B/D. We show that these parameters are almost
orthogonal in their predicted effect on the colours of the dust/PAH emission. In most
practical applications B/D will actually not be a free
parameter but (together with the angular size θgal and
inclination i of the disk) act as a constraint derived from morphological
decomposition of higher resolution optical images. This also extends the range of
applicability of the model along the Hubble sequence. We further show that the dependence
of the dust emission SED on the colour of the stellar photon field depends primarily on
the ratio between the luminosities of the young and old stellar populations (as specified
by the parameters SFR and old) rather than on the
detailed colour of the emissions from either of these populations. The model is thereby
independent of a priori assumptions of the detailed mathematical form of the dependence of
SFR on time, allowing UV/optical SEDs to be dereddened without recourse
to population synthesis models.
Utilising these findings, we show how the predictive power of radiative transfer calculations can be combined with measurements of θgal, i and B/D from optical images to self-consistently fit UV/optical-MIR/FIR/submm SEDs observed in large statistical surveys in a fast and flexible way, deriving physical parameters on an object-by-object basis. We also identify a non-parametric test of the fidelity of the model in practical applications through comparison of the model predictions for FIR colour and surface brightness with the corresponding observed quantities. This should be effective in identifying objects such as AGNs or star-forming galaxies with markedly different geometries to those of the calibrators of Xilouris et al. The results of the calculations are made available in the form of a large library of simulated dust emission SEDs spanning the whole parameter space of our model, together with the corresponding library of dust attenuation calculated using the same model.
Key words: radiative transfer / dust, extinction / galaxies: spiral / galaxies: individual: NGC 891 / infrared: galaxies / ultraviolet: galaxies
We dedicate this paper to the memory of Angelos Misiriotis, sorely missed as a friend, collaborator and exceptional scientist.
Appendices are only available in electronic form at http://www.aanda.org
The data are only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/527/A109
© ESO, 2011
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.