Issue |
A&A
Volume 527, March 2011
|
|
---|---|---|
Article Number | A124 | |
Number of page(s) | 11 | |
Section | Cosmology (including clusters of galaxies) | |
DOI | https://doi.org/10.1051/0004-6361/201014965 | |
Published online | 08 February 2011 |
Gravitational lensing and dynamics in SL2S J02140-0535: probing the mass out to large radius
1
Universidad de ValparaísoDepartamento de Física y Astronomía,
Avenida Gran Bretaña 1111,
Valparaíso,
Chile
e-mail: tverdugo@dfa.uv.cl
2
Laboratoire d’Astrophysique de Marseille, Université de Provence,
CNRS, 38 rue Frédéric
Joliot-Curie, 13388
Marseille Cedex 13,
France
3
Dark Cosmology center, Niels Bohr Institute, University of
Copenhagen, Juliane Marie Vej
30, 2100
Copenhagen,
Denmark
4
Laboratoire d’Astrophysique de Toulouse-Tarbes, Université de
Toulouse, CNRS, 57 Avenue
d’Azereix, 65
000
Tarbes,
France
5
Durham University, Physics and Astronomy Department,
South Road, Durham
DH3 1LE,
UK
Received:
10
May
2010
Accepted:
5
January
2011
Context. Studying the density profiles of galaxy groups offers an important insight into the formation and evolution of the structures in the universe, since galaxy groups bridge the gap between single galaxies and massive clusters.
Aims. We aim to probe the mass of SL2S J02140-0535, a galaxy group at z = 0.44 from the Strong Lensing Legacy Survey (SL2S), which has uncovered this new population of group-scale strong lenses.
Methods. We combine strong lensing modeling and dynamical constraints. The strong lensing analysis is based on multi-band HST/ACS observations exhibiting strong lensing features that we have followed-up spectroscopically with VLT/FORS2. To constrain the scale radius of an NFW mass profile that cannot be constrained by strong lensing, we propose a new method by taking advantage of the large-scale dynamical information provided by VLT/FORS2 and KECK/LRIS spectroscopy of group members.
Results. In constrast to other authors, we show that the observed lensing features in SL2S J02140-0535 belong to different background sources: one at z = 1.7 ± 0.1 (photometric redshift) produces three images, while the other at z = 1.023 ± 0.001 (spectroscopic redshift) has only a single image. Our unimodal NFW mass model reproduces these images very well. It is characterized by a concentration parameter c200 = 6.0 ± 0.6, which is slightly greater than the value expected from ΛCDM simulations for a mass of M200 ≈ 1 × 1014 M⊙. The spectroscopic analysis of group members also reveals a unimodal structure that exhibits no evidence of merging. The position angle of the halo is θ = 111.6 ± 0.2, which agrees with the direction defined by the luminosity contours. We compare our dynamic mass estimate with an independent weak-lensing based mass estimate finding that both are consistent.
Conclusions. Our combined lensing and dynamical analysis of SL2S J02140-0535 demonstrates the importance of spectroscopic information in reliably identifying the lensing features. Our findings argue that the system is a relaxed, massive galaxy group where mass is traced by light. This work shows a potentially useful method for constraining large-scale properties inaccessible to strong lensing, such as the scale radius of the NFW profile.
Key words: gravitational lensing: strong / galaxies: groups: general / galaxies: groups: individual: SL2S J02140-0535
Based on observations obtained with MegaPrime/MegaCam, a joint project of CFHT and CEA/DAPNIA, at the Canada-France-Hawaii Telescope (CFHT) which is operated by the National Research Council (NRC) of Canada, the Institut National des Sciences de l’Univers of the center National de la Recherche Scientifique (CNRS) of France, and the University of Hawaii. This work is based in part on data products produced at TERAPIX and the Canadian Astronomy Data center as part of the Canada-France-Hawaii Telescope Legacy Survey, a collaborative project of NRC and CNRS. Also based on HST data as well as Keck (LRIS) and VLT (FORS 2) data.
© ESO, 2011
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.