Issue |
A&A
Volume 526, February 2011
|
|
---|---|---|
Article Number | A38 | |
Number of page(s) | 9 | |
Section | Interstellar and circumstellar matter | |
DOI | https://doi.org/10.1051/0004-6361/201015583 | |
Published online | 17 December 2010 |
Dynamics of the 6.7 and 12.2 GHz methanol masers around Cepheus A HW2⋆
1
Leiden Observatory, Leiden University,
PO Box 9513,
2300 RA
Leiden,
The Netherlands
e-mail: kalle@strw.leidenuniv.nl
2
Joint Institute for VLBI in Europe, PO Box 2, 7990 AA
Dwingeloo, The
Netherlands
e-mail: langevelde@jive.nl; bourke@jive.nl
3
Argelander-Institut für Astronomie, University of Bonn,
Auf dem Hügel 71,
53121
Bonn,
Germany
e-mail: wouter@astro.uni-bonn.de
Received:
13
August
2010
Accepted:
15
October
2010
Context. The 6.7 GHz methanol maser is exclusively associated with high-mass star formation. However, it remains unclear what structures harbour the methanol masers. Cepheus A is one of the closest regions of massive star formation, making it an excellent candidate for detailed studies.
Aims. We determine the dynamics of maser spots in the high-mass star-forming region Cepheus A in order to infer where and when the maser emission occurs.
Methods. Very long baseline interferometry (VLBI) observations of the 6.7 and 12.2 GHz methanol masers allows for mapping their spatial and velocity distribution. Phase-referencing is used to determine the astrometric positions of the maser emission, and multi-epoch observations can reveal 3D motions.
Results. The 6.7 GHz methanol masers are found in a filamentary structure over ~1350 AU, straddling the waist of the radio jet HW2. The positions agree well with previous observations of both the 6.7 and 12.2 GHz methanol masers. The velocity field of the maser spots does not show any sign of rotation, but is instead consistent with an infall signature. The 12.2 GHz methanol masers are closely associated with the 6.7 GHz methanol masers, and the parallax that we derive confirms previous measurements.
Conclusions. We show that the methanol maser emission very likely arises in a shock interface in the equatorial region of Cepheus A HW2 and presents a model in which the maser emission occurs between the infalling gas and the accretion disk/process.
Key words: stars: formation / masers / ISM: individual objects: Cepheus A / ISM: general
Table 3 is only available in electronic form at http://www.aanda.org
© ESO, 2010
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.