Issue |
A&A
Volume 526, February 2011
|
|
---|---|---|
Article Number | A26 | |
Number of page(s) | 8 | |
Section | Stellar structure and evolution | |
DOI | https://doi.org/10.1051/0004-6361/201015506 | |
Published online | 16 December 2010 |
The impact of chemical differentiation of white dwarfs on thermonuclear supernovae
1
Departament de Física i Enginyeria NuclearUniversitat Politècnica
de Catalunya, c/Comte d’Urgell
187, 08036,
Barcelona,
Spain
e-mail: eduardo.bravo@upc.edu
2
Departament de Física Aplicada, Universitat Politècnica de
Catalunya, c/Esteve Terrades
5, 08860
Castelldefels,
Spain
e-mail: garcia@fa.upc.edu
3
Facultad de Ciencias Astronómicas y Geofísicas, Universidad
Nacional de La Plata, Paseo del
Bosque s/n, 1900
La Plata,
Argentina
e-mail: althaus@fcaglp.fcaglp.unlp.edu.ar
4
Instituto de Astrofísica de La Plata (CCT La Plata),
CONIC ET, 1900
La Plata,
Argentina
5
Institut d’Estudis Espacials de Catalunya,
Ed. Nexus-201, c/Gran Capita 2–4,
08034
Barcelona,
Spain
6
Departamento de Física Teórica y del Cosmos, Universidad de
Granada, 18071
Granada,
Spain
Received:
30
July
2010
Accepted:
24
October
2010
Aims. Gravitational settling of 22Ne in cooling white dwarfs can affect the outcome of thermonuclear supernovae. We investigate how the supernova energetics and nucleosynthesis are in turn influenced by this process. We use realistic chemical profiles derived from state-of-the-art white dwarf cooling sequences. The cooling sequences provide a link between the white dwarf chemical structure and the age of the supernova progenitor system.
Methods. The cooling sequence of a 1 M⊙ white dwarf was computed until freezing using an up-to-date stellar evolutionary code. We computed explosions of both Chandrasekhar mass and sub-Chandrasekhar mass white dwarfs, assuming spherical symmetry and neglecting convective mixing during the pre-supernova carbon simmering phase to maximize the effects of chemical separation.
Results. Neither gravitational settling of 22Ne nor chemical differentiation of 12C and 16O have an appreciable impact on the properties of type Ia supernovae, unless there is a direct dependence of the flame properties (density of transition from deflagration to detonation) on the chemical composition. At a fixed transition density, the maximum variation in the supernova magnitude obtained from progenitors of different ages is ~0.06 mag, and even assuming an unrealistically large diffusion coefficient of 22Ne it would be less than ~0.09 mag. However, if the transition density depends on the chemical composition (all other things being equal) the oldest SNIa can be as much as 0.4 mag brighter than the youngest ones (in our models the age difference is 7.4 Gyr). In addition, our results show that 22Ne sedimentation cannot be invoked to account for the formation of a central core of stable neutron-rich Fe-group nuclei in the ejecta of sub-Chandrasekhar models, as required by observations of type Ia supernovae.
Key words: diffusion / distance scale / stars: interiors / supernovae: general / stars: evolution / white dwarfs
© ESO, 2010
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.