Issue |
A&A
Volume 525, January 2011
|
|
---|---|---|
Article Number | A92 | |
Number of page(s) | 14 | |
Section | Interstellar and circumstellar matter | |
DOI | https://doi.org/10.1051/0004-6361/201015425 | |
Published online | 03 December 2010 |
A deep wide-field sub-mm survey of the Carina Nebula complex⋆
1
Universitäts-Sternwarte München,
Ludwig-Maximilians-Universität,
Scheinerstr. 1,
81679
München,
Germany
e-mail: preibisch@usm.uni-muenchen.de
2
Max-Planck-Institut für Radioastronomie,
Auf dem Hügel 69,
53121
Bonn,
Germany
3
Astrophysikalisches Institut Potsdam, An der Sternwarte 16, 14482
Potsdam,
Germany
Received: 19 July 2010
Accepted: 30 September 2010
Context. The Great Nebula in Carina is one of the most massive (M ∗ ,total ≳25 000 M⊙) star-forming complexes in our Galaxy and contains several stars with (initial) masses exceeding ≈100 M⊙; it is therefore a superb location in which to study the physics of violent massive star-formation and the resulting feedback effects, including cloud dispersal and triggered star-formation.
Aims. We aim to reveal the cold dusty clouds in the Carina Nebula complex, to determine their morphology and masses, and to study the interaction of the luminous massive stars with these clouds.
Methods. We used the Large APEX Bolometer Camera LABOCA at the APEX telescope to map a 1.25° × 1.25° (≙ 50 × 50 pc2) region at 870 μm with 18′′ angular resolution (= 0.2 pc at the distance of the Carina Nebula) and an rms noise level of ≈20 mJy/beam.
Results. From a comparison to Hα images we infer that about 6% of the 870 μm flux in the observed area is likely free-free emission from the HII region, while about 94% of the flux is very likely thermal dust emission. The total (dust + gas) mass of all clouds for which our map is sensitive is ~60 000 M⊙, in good agreement with the mass of the compact clouds in this region derived from 13CO line observations. There is a wide range of different cloud morphologies and sizes, from large, massive clouds with several 1000 M⊙, to small diffuse clouds containing just a few M⊙. We generally find good agreement in the cloud morphology seen at 870 μm and the Spitzer 8 μm emission maps, but also identify a prominent infrared dark cloud. Finally, we construct a radiative transfer model for the Carina Nebula complex that reproduces the observed integrated spectral energy distribution reasonably well.
Conclusions. Our analysis suggests a total gas + dust mass of about 200 000 M⊙ in the investigated area; most of this material is in the form of molecular clouds, but a widely distributed component of (partly) atomic gas, containing up to ~50% of the total mass, may also be present. Currently, only some 10% of the gas is in sufficiently dense clouds to be immediately available for future star formation, but this fraction may increase with time owing to the ongoing compression of the strongly irradiated clouds and the expected shockwaves of the imminent supernova explosions.
Key words: stars: formation / ISM: clouds / ISM: structure / ISM: individual objects:NGC 3372 / submillimeter: ISM
© ESO, 2010
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.