Issue |
A&A
Volume 525, January 2011
|
|
---|---|---|
Article Number | L12 | |
Number of page(s) | 5 | |
Section | Letters | |
DOI | https://doi.org/10.1051/0004-6361/200913975 | |
Published online | 10 December 2010 |
Letters to the Editor
The last dance of the bashful ballerina?⋆
Department of Physics, PO Box 3000, 90014 University of Oulu, Finland
e-mail: kalevi.mursula@oulu.fi
Received:
27
December
2009
Accepted:
22
June
2010
Aims. The heliospheric magnetic field (HMF) has long been hemispherically asymmetric so that the field in the northern hemisphere is weaker and the area larger than in the south. This asymmetry, also called the bashful ballerina, has existed during roughly three-year intervals of the late declining to minimum phase of solar cycles 16–22. We study the HMF and its hemispheric asymmetry during the exceptional solar cycle 23.
Methods. We use NASA National Space Science Data Center OMNI database, which contains all solar wind and HMF observations at the Earth’s orbit, and coronal field predictions by Wilcox Solar Observatory. We present a new method to study the global hemispheric asymmetry by using the power n of the radial decrease of the radial field from the coronal source surface to 1 AU.
Results. We find that the HMF is exceptional at low latitudes in solar cycle 23: while the typical latitudinal variation was attained in the north in 2008, it did not take place in the south until Spring 2009. Thus, the Rosenberg-Coleman rule is abnormally delayed or broken for the first time in 50 years. The n-values verify the clear northern dominance in cycles 21–22. However, the low-latitude observations depict a considerably smaller asymmetry in cycle 23, although Ulysses observations at high latitudes show an equally large asymmetry in 2007 and in 1994–1995. We argue that the weak low-latitude visibility of the asymmetry in cycle 23 is due to the exceptionally weak polar fields, leading to large tilt angle and a wide current sheet.
Conclusions. We note that the exceptional properties of cycle 23 (weak dynamo, large tilt, small asymmetry) agree with the long-term evolution of hemispheric asymmetry viewed at the Earth. The active Sun is seen as more asymmetric at the Earth than the quiet Sun because the polar coronal holes with unipolar fields extend closer to the equator, allowing their asymmetry to be viewed even at low latitudes. We suggest that, after the period of weak activity and small asymmetry at 1 AU that started with cycle 23, the hemispheric asymmetry will again, with the increasingly active cycles, become better visible at 1 AU but the asymmetry will be oppositely oriented, including a northward shifted current sheet, and larger areas but weaker intensities in the south. Thus, the ballerina should no longer be systematically bashful for some 100–150 years.
Key words: Sun: heliosphere / Sun: activity / Sun: corona / solar wind
Figure 4 is only available in electronic form at http://www.aanda.org
© ESO, 2010
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.