Issue |
A&A
Volume 524, December 2010
|
|
---|---|---|
Article Number | A79 | |
Number of page(s) | 6 | |
Section | Extragalactic astronomy | |
DOI | https://doi.org/10.1051/0004-6361/201015140 | |
Published online | 25 November 2010 |
Very Large Array observations of the 8 o’clock arc lens system: radio emission and a limit on the star-formation rate
1
Argelander-Institut für Astronomie, Auf dem Hügel 71, 53121
Bonn, Germany
e-mail: fvolino@astro.uni-bonn.de
2
Max Planck Institut für Radioastronomie,
Auf dem Hügel 69, 53121
Bonn,
Germany
3
ASTRON, Oude Hoogeveensedijk 4, 7991 PD
Dwingeloo, The
Netherlands
4
Leiden Observatory, Leiden University,
Postbus 9513, 2300 RA
Leiden, The
Netherlands
5
Centre for Astrophysics and Supercomputing, Swinburne University
of Technology, Australia
Received:
2
June
2010
Accepted:
30
September
2010
Context. The 8 o’clock arc is a gravitationally lensed Lyman break galaxy (LBG) at redshift z = 2.73 that has a star-formation rate (SFR) of ~270 M⊙ yr-1 (derived from optical and near-infrared spectroscopy). Taking the magnification of the system (~12) and the SFR into account, the expected flux density of any associated radio emission at 1.4 GHz is predicted to be just 0.1 mJy. However, the lens system is found to be coincident with a radio source detected in the NRAO Very Large Array (VLA) Sky Survey with a flux density of ~5 mJy. If this flux density is attributed to the lensed LBG then it would imply a SFR ~ 11 000 M⊙ yr-1, in contrast with the optical and near-infrared derived value.
Aims. We want to investigate the radio properties of this system, and independently determine the SFR for the LBG from its lensed radio emission.
Methods. We have carried out new high resolution imaging with the VLA ain A and B-configurations at 1.4 and 5 GHz.
Results. We find that the radio emission is dominated by a radio-loud AGN associated with the lensing galaxy. The radio-jet from the AGN partially covers the lensed arc of the LBG, and we do not detect any radio emission from the unobscured region of the arc down to a 3σ flux-density limit of 108 μJy beam-1.
Conclusions. Using the radio data, we place a limit of ≤750 M⊙ yr-1 for the SFR of the LBG, which is consistent with the results from the optical and near-infrared spectroscopy. We expect that the sensitivity of the Expanded VLA will be sufficient to detect many high redshift LBGs that are gravitationally lensed after only a few hours of observing time. The high angular resolution provided by the EVLA will also allow detailed studies of the lensed galaxies and determine if there is radio emission from the lens.
Key words: galaxies: high-redshift / gravitational lensing: strong
© ESO, 2010
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.