Issue |
A&A
Volume 524, December 2010
|
|
---|---|---|
Article Number | A50 | |
Number of page(s) | 22 | |
Section | Extragalactic astronomy | |
DOI | https://doi.org/10.1051/0004-6361/200913798 | |
Published online | 23 November 2010 |
FERO: Finding extreme relativistic objects
I. Statistics of relativistic Fe Kα lines in radio-quiet Type 1 AGN⋆
1
European Space Astronomy Centre of ESA, Apartado 50727,
28080
Madrid,
Spain
e-mail: icalle@sciops.esa.int
2 MIT Kavli Institute for Astrophysics and Space Research,
Cambridge, USA
3
Dipartimento di Fisica, Università degli Studi Roma
Tre, via della Vasca Navale
84, 00146
Roma,
Italy
4 Astronomical Institute AS CR, Boční II 1401/1a, 14131 Praha
4, Czech Republic
5
Centro de Astrobiología (CSIC-INTA); LAEFF, PO Box 78, Villanueva
de la Cañada, Madrid
28691,
Spain
6
Laboratoire d’Astrophysique, UMR5571 Université J. Fourier/CNRS,
Observatoire de Grenoble BP53, 38041
Grenoble Cedex 9,
France
7
Osservatorio Astronomico di Roma, via Frascati 33,
00040
Monteporzio Catone,
Italy
8
School of Physics and Astronomy, University of Southampton,
Highfield,
Southampton
SO17 1BJ,
UK
9
APC, Université Paris 7 Denis Diderot,
75205
Paris,
France
10
Observatoire Astronomique de Strasbourg, Université Louis-Pasteur,
CNRS, INSU, 11 rue de l’Université, 67000
Strasbourg,
France
11
INAF-IASF Bologna, via Gobetti 101, 40129
Bologna,
Italy
Received:
30
November
2009
Accepted:
27
July
2010
Context. Accretion models predict that fluorescence lines broadened by relativistic effects should arise from reflection of X-ray emission onto the inner region of the accretion disc surrounding the central black hole of active galactic nuclei (AGN). The theory behind the origin of relativistic lines is well established, and observational evidence from a moderate number of sources seems to support the existence of these lines.
Aims. The aim of this work is to establish the fraction of AGN with relativistic Fe Kα lines, and study possible correlations with source physical properties.
Methods. An XMM-Newton collection of 149 radio-quiet Type 1 AGN has been systematically and uniformly analysed in order to search for evidence of a relativistically broadened Fe Kα line. To enable statistical studies, an almost complete, flux-limited subsample of 31 sources has been defined by selecting the FERO sources observed by the RXTE all-sky Slew Survey with a count rate in the 3–8 keV energy band greater than 1 cts/sec. The 2–10 keV spectra of the FERO sources where compared with a complex model including most of the physical components observed in the X-ray spectra of Seyfert galaxies: a power law primary continuum modified by non-relativistic Compton reflection and warm absorption, plus a series of narrow Fe line reflection features.
Results. The observed fraction of sources in the flux-limited sample that show strong evidence of a relativistic Fe Kα line is 36%. This number can be interpreted as a lower limit to the fraction of sources that present a relativistic broad Fe Kα line in the wider AGN population. The average line equivalent width (EW) is of the order of 100 eV. The outcome of the fit yields an average disc inclination angle of 28 ± 5° and an average power-law index of the radial disc emissivity law of 2.4 ± 0.4. The spin value is well constrained only in 2 cases (MCG-6-30-15 and MRK 509); in the rest of the cases, whenever a constraint can be placed, it always implies the rejection of the static black hole solution. The Fe Kα line EW does not correlate with disc parameters or with system physical properties, such as black hole mass, accretion rate, and hard X-ray luminosity.
Key words: quasars: emission lines / galaxies: nuclei / galaxies: active / X-ray: galaxies
Appendices are only available in electronic form at http://www.aanda.org
© ESO, 2010
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.