Issue |
A&A
Volume 522, November 2010
|
|
---|---|---|
Article Number | A101 | |
Number of page(s) | 8 | |
Section | The Sun | |
DOI | https://doi.org/10.1051/0004-6361/201014217 | |
Published online | 08 November 2010 |
Retrieval of solar magnetic fields from high-spatial resolution filtergraph data: the Imaging Magnetograph eXperiment (IMaX)
1
Instituto de Astrofísica de Andalucía (CSIC),
Apdo. Correos 3004,
18080
Granada,
Spain
e-mail: lbellot@iaa.es; jti@iaa.es
2
National Astronomical Observatory of Japan,
Mitaka,
Tokyo
181-8588,
Japan
e-mail: d.orozco@nao.ac.jp
3 Instituto de Astrofísica de Canarias, vía Láctea, s/n, 38200
La Laguna (Tenerife), Spain
e-mail: vmp@iac.es; jab@iac.es
4
UCL – Mullard Space Science Laboratory,
Holmbury St Mary,
Dorking, Surrey,
RH5 6NT,
UK
e-mail: svd@mssl.ucl.ac.uk
Received: 8 February 2010
Accepted: 25 June 2010
Context. The design of modern instruments does not only imply thorough studies of instrumental effects but also a good understanding of the scientific analysis planned for the data.
Aims. We investigate the reliability of Milne-Eddington (ME) inversions of high-resolution magnetograph measurements such as those to be obtained with the Imaging Magnetograph eXperiment (IMaX) aboard the Sunrise balloon. We also provide arguments to choose either Fe i 525.02 or 525.06 nm as the most suitable line for IMaX.
Methods. We reproduce an IMaX observation using magnetoconvection simulations of the quiet Sun and synthesizing the four Stokes profiles emerging from them. The profiles are degraded by spatial and spectral resolution, noise, and limited wavelength sampling, just as real IMaX measurements. We invert these data and estimate the uncertainties in the retrieved physical parameters caused by the ME approximation and the spectral sampling.
Results. It is possible to infer the magnetic field strength, inclination, azimuth, and line-of-sight velocity from standard IMaX measurements (4 Stokes parameters, 5 wavelength points, and a signal-to-noise ratio of 1000) applying ME inversions to any of the Fe i lines at 525 nm. We also find that telescope diffraction has important effects on the spectra coming from very high resolution observations of inhomogeneous atmospheres. Diffration reduces the amplitude of the polarization signals and changes the asymmetry of the Stokes profiles.
Conclusions. The two Fe i lines at 525 nm meet the scientific requirements of IMaX, but Fe i 525.02 nm is to be preferred because it leads to smaller uncertainties in the retrieved parameters and offers a better detectability of the weakest (linear) polarization signals prevailing in the quiet Sun.
Key words: magnetic fields / Sun: photosphere / instrumentation: high angular resolution
© ESO, 2010
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.