Issue |
A&A
Volume 519, September 2010
|
|
---|---|---|
Article Number | A23 | |
Number of page(s) | 9 | |
Section | Cosmology (including clusters of galaxies) | |
DOI | https://doi.org/10.1051/0004-6361/200912866 | |
Published online | 08 September 2010 |
An analytic approach to number counts of weak-lensing peak detections
Zentrum für Astronomie der Universität Heidelberg, Institut für Theoretische Astrophysik, Albert-Ueberle-Str. 2, 69120 Heidelberg, Germany e-mail: maturi@ita.uni-heidelberg.de
Received:
10
July
2009
Accepted:
15
March
2010
We apply an analytic method to predict peak counts in weak-lensing surveys. It is based on the theory of Gaussian random fields and suitable to quantify the level of detections caused by chance projections of large-scale structures as well as the shape and shot noise contributed by the background galaxies. A simple analytical recipe is given to compute the signal-to-noise distribution of those detections. We compare our method to peak counts obtained from numerical ray-tracing simulations and find good agreement at the expected level. The number of peak detections depends substantially on the shape and size of the filter applied to the gravitational shear field. We confirm that weak-lensing peak counts are dominated by spurious detections up to signal-to-noise ratios of 3–5 and that most filters yield only a few detections per square degree above this level, while a filter optimised for suppressing large-scale structure noise returns up to an order of magnitude more. Galaxy shape noise and noise from large-scale structures cannot be treated as two independent components since the two contributions add in a non-trivial way.
Key words: cosmology: theory / large-scale structure of Universe / galaxies: clusters: general / gravitational lensing: weak
© ESO, 2010
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.