Issue |
A&A
Volume 518, July-August 2010
Herschel: the first science highlights
|
|
---|---|---|
Article Number | L67 | |
Number of page(s) | 5 | |
Section | Letters | |
DOI | https://doi.org/10.1051/0004-6361/201014613 | |
Published online | 16 July 2010 |
Letter to the Editor
PACS and SPIRE photometer maps of M 33: First results of the HERschel M 33 Extended Survey (HERM33ES)*
1
Instituto Radioastronomía Milimétrica,
Av. Divina Pastora 7, Nucleo Central, 18012 Granada, Spain e-mail: kramer@iram.es
2
Institute of Astronomy and Astrophysics, National
Observatory of Athens, P. Penteli, 15236 Athens, Greece
3
Department of Astronomy, University of Massachusetts, Amherst,
MA 01003, USA
4
Laboratoire d'Astrophysique de Bordeaux, Université Bordeaux 1,
Observatoire de Bordeaux, OASU, UMR 5804, CNRS/INSU, BP 89,
Floirac 33270
5
IPAC, MS 100-22
California Institute of Technology, Pasadena, CA 91125, USA
6
Department of Astronomy & Astrophysics,
Tata Institute of Fundamental Research,
Homi Bhabha Road, Mumbai 400005, India
7
Institute of Astronomy, University of Cambridge, Madingley Road,
Cambridge CB3 0HA, England
8
Department of Astronomy, Cornell University, Ithaca, NY 14853, USA
9
Max Planck Institut für Radioastronomie,
Auf dem Hügel 69, 53121 Bonn, Germany
10
Dept. Física Teórica y del Cosmos, Universidad de
Granada, Spain
11
Department of Radio and Space Science,
Onsala Observatory, Chalmers University of Technology,
43992 Onsala, Sweden
12
Argelander Institut für Astronomie. Auf dem Hügel 71,
53121 Bonn, Germany
13
Observatoire de Paris, LERMA, CNRS, 61 Av. de l'Observatoire, 75014 Paris, France
14
ESO, Casilla 19001, Santiago 19, Chile
15
Observatorio Astronómico Nacional (OAN) - Observatorio de Madrid,
Alfonso XII 3, 28014 Madrid, Spain
16
Leiden Observatory, Leiden University, PO Box 9513,
2300 RA Leiden, The Netherlands
17
ATNF, CSIRO, PO Box 76, Epping, NSW 1710, Australia
18
Centro de Astrobiología (INTA-CSIC),
Ctra de Torrejón a Ajalvir, km 4, 28850 Torrejón de Ardoz,
Madrid, Spain
19
KOSMA, I. Physikalisches Institut, Universität zu Köln,
Zülpicher Straße 77, 50937 Köln, Germany
20
University of British Columbia Okanagan, 3333 University Way,
Kelowna, BC V1V 1V7, Canada
21
IRAM, 300 rue de la Piscine, 38406 St. Martin d'Hères, France
22
California Institute of Technology, MC 105-24, 1200 East
California Boulevard, Pasadena, CA 91125, USA
23
JAC, 660 North A'ohoku Place, University Park, Hilo, HI 96720,
USA
24
SRON Netherlands Institute for Space Research, Landleven 12, 9747
AD Groningen, The Netherlands
Received:
31
March
2010
Accepted:
3
May
2010
Context. Within the framework of the HERM33ES key program, we are studying the star forming interstellar medium in the nearby, metal-poor spiral galaxy M 33, exploiting the high resolution and sensitivity of Herschel.
Aims. We use PACS and SPIRE maps at 100, 160, 250, 350, and 500 μm wavelength, to study the variation of the spectral energy distributions (SEDs) with galacto-centric distance.
Methods. Detailed SED modeling is performed using azimuthally averaged fluxes in elliptical rings of 2 kpc width, out to 8 kpc galacto-centric distance. Simple isothermal and two-component grey body models, with fixed dust emissivity index, are fitted to the SEDs between 24 μm and 500 μm using also MIPS/Spitzer data, to derive first estimates of the dust physical conditions.
Results. The far-infrared and submillimeter maps reveal the branched, knotted spiral structure of M 33. An underlying diffuse disk is seen in all SPIRE maps (250–500 μm). Two component fits to the SEDs agree better than isothermal models with the observed, total and radially averaged flux densities. The two component model, with β fixed at 1.5, best fits the global and the radial SEDs. The cold dust component clearly dominates; the relative mass of the warm component is less than 0.3% for all the fits. The temperature of the warm component is not well constrained and is found to be about 60 K ± 10 K. The temperature of the cold component drops significantly from ~24 K in the inner 2 kpc radius to 13 K beyond 6 kpc radial distance, for the best fitting model. The gas-to-dust ratio for β = 1.5, averaged over the galaxy, is higher than the solar value by a factor of 1.5 and is roughly in agreement with the subsolar metallicity of M 33.
Key words: galaxies: individual: M 33 / galaxies: evolution / Local Group / galaxies: ISM / galaxies: evolution / dust, extinction
© ESO, 2010
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.