Issue |
A&A
Volume 517, July 2010
|
|
---|---|---|
Article Number | L3 | |
Number of page(s) | 5 | |
Section | Letters | |
DOI | https://doi.org/10.1051/0004-6361/201014776 | |
Published online | 30 July 2010 |
Letter to the Editor
The 2008 outburst in the young stellar system Z CMa*
I. Evidence of an enhanced bipolar wind on the AU-scale
1
INAF-Osservatorio Astrofisico di Arcetri, Largo
E. Fermi 5, 50125 Firenze, Italy e-mail: benisty@arcetri.astro.it
2
Laboratoire d'Astrophysique de Grenoble, CNRS-UJF UMR 5571,
414 rue de la Piscine, 38400 Saint Martin d'Hères, France
3
Laboratoire A. H. Fizeau, UMR 6525, Université de Nice-Sophia
Antipolis, Parc Valrose, 06108 Nice Cedex 02, France
4
Universidade do Porto, Faculdade de Engenharia, SIM Unidade
FCT 4006, Rua Dr. Roberto Frias, s/n 4200-465 Porto, Portugal
5
Crimean Astrophysical Observatory, 98409 Nauchny, Crimea,
Ukraine
6
Caltech, MC 249-17, 1200 East California Blvd, Pasadena, CA 91125, USA
7
Universitäts-Sternwarte München Scheinerstr. 1, 81679 München, Germany
8
European Southern Observatory, Karl-Schwarzschild-Strasse 2, 85748
Garching, Germany
9
Max Planck Institut für Radioastronomie, Auf dem Hügel 69, 53121
Bonn, Germany
Received:
12
April
2010
Accepted:
26
June
2010
Context. Accretion is a fundamental process in star formation. Although the time evolution of accretion remains a matter of debate, observations and modelling studies suggest that episodic outbursts of strong accretion may dominate the formation of the central protostar. Observing young stellar objects during these elevated accretion states is crucial to understanding the origin of unsteady accretion.
Aims. Z CMa is a pre-main-sequence binary system composed of an embedded Herbig Be star, undergoing photometric outbursts, and a FU Orionis star. This system therefore provides a unique opportunity to study unsteady accretion processes. The Herbig Be component recently underwent its largest optical photometric outburst detected so far. We aim to constrain the origin of this outburst by studying the emission region of the HI Br line, a powerful tracer of accretion/ejection processes on the AU-scale in young stars.
Methods. Using the AMBER/VLTI instrument at spectral resolutions of 1500 and 12 000, we performed spatially and spectrally resolved interferometric observations of the hot gas emitting across the Br emission line, during and after the outburst. From the visibilities and differential phases, we derive characteristic sizes for the Br emission and spectro-astrometric measurements across the line, with respect to the continuum.
Results. We find that the line profile, the astrometric signal, and the visibilities are inconsistent with the signature of either a Keplerian disk or infall of matter. They are, instead, evidence of a bipolar wind, maybe partly seen through a disk hole inside the dust sublimation radius. The disappearance of the Br emission line after the outburst suggests that the outburst is related to a period of strong mass loss rather than a change of the extinction along the line of sight.
Conclusions. Apart from the photometric increase of the system, the main consequence of the outburst is to trigger a massive bipolar outflow from the Herbig Be component. Based on these conclusions, we speculate that the origin of the outburst is an event of enhanced mass accretion, similar to those occuring in EX Ors and FU Ors.
Key words: circumstellar matter / stars: variables: T Tauri / herbig Ae/Be / stars: winds / outflows / methods: obsevational / stars: individual: Z CMa / techniques: interferometric
© ESO, 2010
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.