Issue |
A&A
Volume 516, June-July 2010
|
|
---|---|---|
Article Number | A59 | |
Number of page(s) | 9 | |
Section | Extragalactic astronomy | |
DOI | https://doi.org/10.1051/0004-6361/201014232 | |
Published online | 28 June 2010 |
Is BL Lacertae an “orphan” AGN?*
Multiband and spectroscopic constraints on the parent population
1
INAF, Osservatorio Astronomico di Torino, via Osservatorio 20, 10025 Pino Torinese, Italy e-mail: capetti@oato.inaf.it
2
SISSA-ISAS, via Beirut 2-4, 34014 Trieste, Italy
3
INAF, Osservatorio Astronomico di Padova, Vicolo dell'Osservatorio 5,
35122 Padova, Italy
Received:
10
February
2010
Accepted:
26
March
2010
Aims. We have analysed optical spectra of BL Lacertae, the prototype of its blazar subclass, to verify the broad Hα emission line detected more than a decade ago and its possible flux variation. We used the spectroscopic information to investigate the question of the BL Lacertae parent population.
Methods. Low- and high-resolution optical spectra of BL Lacertae were acquired with the DOLORES spectrograph at the 3.58 m telescopio nazionale Galileo (TNG) during four nights in 2007–2008, when the source was in a relatively faint state. In three cases we were able to fit the complex Hα spectral range with multiple line components and to measure both the broad Hα and several narrow emission line fluxes.
Results. A critical comparison with previous results suggests that the broad
Hα flux has increased by about 50% in ten years. This might be
due to an addition of gas in the broad line region (BLR), or to a
strengthening of the disc luminosity, but such flux changes are not
unusual in Broad Lined active nuclei. We estimated the BL Lacertae black
hole mass by means of its relation with the bulge luminosity, finding
4-6 × 108 . The virial mass estimated from the
spectroscopic data gives instead a value 20–30 times lower. An
analysis of the disc and BLR properties in different AGNs suggests that
this discrepancy is due to an underluminosity of the BL Lacertae BLR.
Finally, we addressed the problem of the BL Lacertae parent population,
comparing its isotropic quantities with those of other AGN classes. From
the point of view of the narrow emission line spectrum, the source is
located close to low-excitation radio galaxies. When one also considers its
diffuse radio power, an association with FR I radio galaxies is
severely questioned due to the lower radio luminosity (at a given line
luminosity) of BL Lacertae. The narrow line and radio luminosities of BL
Lacertae instead match those of a sample of miniature radio galaxies,
which however do not show a BLR. Yet, if existing, “misaligned BL
Lacertae” objects should have entered that sample. We also rule out the
possibility that they were excluded because of a QSO optical
appearance.
Conclusions. The observational constraints suggest that BL Lacertae is caught in a short term transient stage, which does not leave a detectable evolutionary “trace” in the AGN population. We present a scenario that can account for the observed properties.
Key words: galaxies: active / BL Lacertae objects: general / BL Lacertae objects: individual: BL Lacertae / galaxies: jets
© ESO, 2010
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.