Issue |
A&A
Volume 512, March-April 2010
|
|
---|---|---|
Article Number | A1 | |
Number of page(s) | 14 | |
Section | Extragalactic astronomy | |
DOI | https://doi.org/10.1051/0004-6361/200913526 | |
Published online | 17 March 2010 |
J004457+4123 (Sharov 21): not a remarkable nova in M 31 but a background quasar with a spectacular UV flare
1
Thüringer Landessternwarte Tautenburg, Sternwarte 5, 07778
Tautenburg, Germany e-mail: meus@tls-tautenburg.de
2
Max-Planck-Institut für extraterrestrische Physik, Giessenbachstraße,
85748 Garching, Germany
3
Max-Planck-Institut für Astronomie, Königstuhl 17, 69117
Heidelberg, Germany
4
ZAH, Landessternwarte Heidelberg, Königstuhl 12,
Universität Heidelberg, 69117 Heidelberg, Germany
5
Department of Astronomy, Box 351 580, University of Washington,
Seattle, WA 98195, USA
6
Department of Astrophysics, Astronomy and Mechanics, Faculty of
Physics, University of Athens, Panepistimiopolis, 15784 Zografos,
Athens, Greece
7
IESL, Foundation for Research and Technology, 71110 Heraklion,
Crete, Greece
8
Department of Physics, University of Roma La Sapienza, Rome, Italy
9
Institut für Theor. Physik und Astrophysik,
Christian-Albrechts-Universität zu Kiel,
Leibnizstraße 15, 24118 Kiel, Germany
10
Astronomisches Institut,
Universität Bern,
Sidlerstraße 5, 3012 Bern, Switzerland
11
Sternwarte Sonneberg,
Sternwartestr. 32,
96515 Sonneberg, Germany
Received:
22
October
2009
Accepted:
18
December
2009
Aims. We announce the discovery of a quasar behind the disk of M 31, which was previously classified as a remarkable nova in our neighbour galaxy. It is shown here to be a quasar with a single strong flare where the UV flux has increased by a factor of ~20. The present paper is primarily aimed at the remarkable outburst of J004457+4123 (Sharov 21), with the first part focussed on the optical spectroscopy and the improvement in the photometric database.
Methods. We exploited the archives of photographic plates and CCD observations from 15 wide-field telescopes and performed targetted new observations. In the second part, we try to fit the flare by models of (1) gravitational microlensing due to a star in M 31 and (2) a tidal disruption event (TDE) of a star close to the supermassive black hole of the quasar.
Results. Both the optical spectrum and the broad band spectral energy distribution
of Sharov 21 are shown to be very similar to that of normal, radio-quiet
type 1 quasars.
We present photometric data covering more than a century and resulting in a
long-term light curve that is densely sampled over the past five decades.
The variability of the quasar is characterized by a ground state with
typical fluctuation amplitudes of ~0.2 mag around
~ 20.5, superimposed by a singular flare of ~2 yr duration
(observer frame) with the maximum at 1992.81. The total energy in the flare is
at least three orders of magnitudes higher than the radiated energy of the
most luminous supernovae, provided that it comes from an intrinsic process and
the energy is radiated isotropically. The profile of the flare
light curve is asymmetric showing in particular a sudden increase before the maximum,
whereas the decreasing part can be roughly approximated by a
power law.
Both properties appear to support the standard TDE scenario where a ~10
giant star was shredded in the tidal field of a ~2...5×108
black hole.
The short fallback time derived from the observed light curve requires
an ultra-close encounter where the pericentre of the stellar orbit is deep
within the tidal disruption radius.
This simple model neglects, however, the influence of
the massive accretion disk, as well as general-relativistic effects on the orbit
of the tidal debris.
Gravitational microlensing probably provides an alternative
explanation, although the probability of such a high amplification event is very low.
Key words: quasars: general / quasars: individual: J004457+4123 / galaxies: individual: M 31 / gravitational lensing: micro / black hole physics
© ESO, 2010
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.