Issue |
A&A
Volume 510, February 2010
|
|
---|---|---|
Article Number | A64 | |
Number of page(s) | 13 | |
Section | Extragalactic astronomy | |
DOI | https://doi.org/10.1051/0004-6361/200913261 | |
Published online | 10 February 2010 |
Star formation in M 33: the radial and local relations with the gas
1
Osservatorio Astrofisico di Arcetri - INAF, Largo E. Fermi 5, 50125
Firenze, Italy e-mail: [edvige;giova;hunt]@arcetri.astro.it
2
Dept. de Física Teórica y del Cosmos, Facultad de Ciencias, Universidad de Granada, Spain e-mail: simon@ugr.es
Received:
7
September
2009
Accepted:
29
November
2009
Aims. In the Local Group spiral galaxy M 33, we investigate the correlation between the star
formation rate (SFR) surface density, , and the gas density
(molecular, atomic, and total). We also explore whether there are other physical quantities, such as the hydrostatic pressure and dust optical depth, which establish a good correlation with
.
Methods. We use the Hα, far-ultraviolet (FUV), and bolometric emission maps to infer the SFR locally at different spatial scales, and in radial bins using azimuthally averaged values. Most of the local analysis is done using the highest spatial resolution allowed by gas surveys, 180 pc.
The Kennicutt-Schmidt (KS) law, is analyzed by three statistical methods.
Results. At all spatial scales, with Hα emission as a SFR tracer, the KS indices n are always steeper than those derived with the FUV and bolometric emissions. We attribute this to the lack of Hα emission in low luminosity regions where most stars form in small clusters with an incomplete initial mass function at their high mass end. For azimuthally averaged values the depletion timescale for the molecular gas is constant, and the KS index is ± 0.1. Locally, at a spatial resolution of 180 pc, the correlation between
and
is generally poor, even though it is tighter with the molecular and total gas than with the atomic gas alone. Considering only positions where the CO
line is above the 2-σ detection threshold and taking into account uncertainties in
and
, we obtain a steeper KS index than obtained with radial averages:
± 0.07 (for FUV and bolometric SFR tracers), flatter than that relative to the total gas (
± 0.05). The gas depletion timescale is therefore larger in regions of lower
. Lower KS indices (
± 0.34 and
) are found
using different fitting techniques, which do not account for individual position uncertainties. At coarser spatial resolutions these indices get slightly steeper, and the correlation improves. We find an almost linear relation and a better correlation coefficient between the
local
and the ISM hydrostatic pressure or the gas volume density. This
suggests that the stellar disk, gravitationally dominant with respect to the gaseous disk in M 33, has a non-marginal role in driving the SFR. However, the tight local correlation that exists between the dust optical depth and the SFR sheds light on the alternative hypothesis
that the dust column density is a good tracer of the gas that is prone to star formation.
Key words: galaxies: individual: M 33 / galaxies: ISM / Local Group / galaxies: spiral
© ESO, 2010
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.