Issue |
A&A
Volume 510, February 2010
|
|
---|---|---|
Article Number | A109 | |
Number of page(s) | 8 | |
Section | Cosmology (including clusters of galaxies) | |
DOI | https://doi.org/10.1051/0004-6361/200912429 | |
Published online | 18 February 2010 |
Ly
emitters in the GOODS-S field*
A powerful pure nebular SED with N IV] emission at z = 5.563
1
European Southern Observatory, Karl-Schwarzschild-Strasse 2,
Garching bei München 85748, Germany e-mail: araiter@eso.org
2
ST-ECF, Karl-Schwarzschild Str. 2, Garching bei München 85748, Germany
3
Institute for Advanced Studies in Basic Sciences, PO Box 45195-1159, Zanjan 45195, Iran
Received:
6
May
2009
Accepted:
17
December
2009
Context. The Great Observatories Origins Deep Survey (GOODS) has provided us with one of the deepest multi-wavelength views of the distant universe. The combination of multi-band photometry and optical spectroscopy has resulted in the identification of sources whose redshifts extend to values in excess of six. Amongst these distant sources are Lyα emitters whose nature must be deduced by clearly identifying the different components that contribute to the measured SED.
Aims. From a sample of Lyα emitters in the GOODS-S field with uncontaminated photometry and optical (red) spectroscopy, we select a spatially compact object at a redshift of 5.563 (Lyα) that shows a second emission line, identified as ] 1486 Å. The SED is modelled in a way that accounts for both the
] line emission and the photometry in a self-consistent way.
Methods. The photoionization code CLOUDY is used to calculate a range of nebular models as a function
of stellar ionizing source temperature, ionization parameter, density and nebular metallicity. We compare the theoretical and observed magnitudes and search for the model parameters that also reproduce the observed ] luminosity and equivalent width.
Results. A nebular model with a hot blackbody ionizing source of around 100 kK and a nebular metallicity of ~5% of solar is able to fit the observed SED and, in particular, explain the large apparent Balmer break which is inferred from the pure stellar population model fitting conventionally applied to multi-band photometric observations. In our model, an apparent spectral break is produced by strong [] 4959, 5007 Å emission falling in one of the IR bands (IRAC1 in this case). A lower limit on the total baryonic mass of a model of this type is 3.2
.
Conclusions. It is argued that objects with Lyα emission at high redshift that show an apparent Balmer break may have their SED dominated by nebular emission and so could possibly be identified with very young starbursting galaxies rather than massive evolved stellar populations. Detailed studies of these emission nebulæ with large telescopes will provide a unique insight into very early chemical evolution.
Key words: early Universe / Galaxy: formation / galaxies: photometry / galaxies: starburst / galaxies: stellar content / ISM: abundances
Based on observations made at the European Southern Observatory, Paranal, Chile (ESO programme 170.A-0788) The Great Observatories Origins Deep Survey: ESO Public Observations of the SIRTF Legacy/HST Treasury/Chandra Deep Field South.); on observations obtained with the NASA/ESA Hubble Space Telescope obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy (AURA), Inc.; and on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology under a contract with NASA.
© ESO, 2010
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.