Issue |
A&A
Volume 508, Number 1, December II 2009
|
|
---|---|---|
Page(s) | 17 - 43 | |
Section | Cosmology (including clusters of galaxies) | |
DOI | https://doi.org/10.1051/0004-6361/200811565 | |
Published online | 08 October 2009 |
Breaking the self-averaging properties of spatial galaxy fluctuations in the Sloan Digital Sky Survey – Data release six
1
Centro Studi e Ricerche Enrico Fermi, via Panisperna 89 A, Compendio del Viminale, 00184 Rome, Italy e-mail: Francesco.SylosLabini@roma1.infn.it
2
Istituto dei Sistemi Complessi CNR, via dei Taurini 19, 00185 Rome, Italy
3
Institute of Astronomy, St. Petersburg State University, Staryj Peterhoff, 198504 St. Petersburg, Russia
Received:
22
December
2008
Accepted:
27
August
2009
Statistical analyses of finite sample distributions usually assume that fluctuations are self-averaging, i.e. statistically similar in different regions of the given sample volume. By using the scale-length method, we test whether this assumption is satisfied in several samples of the Sloan Digital Sky Survey Data Release Six. We find that the probability density function (PDF) of conditional fluctuations, if filtered on large enough spatial scales (i.e., Mpc/h), shows relevant systematic variations in different subvolumes of the survey. Instead for scales of Mpc/h, the PDF is statistically stable, and its first moment presents scaling behavior with a negative exponent around one. Thus while up to 30 Mpc/h galaxy structures have well-defined power-law correlations, on larger scales it is not possible to consider whole sample average quantities as meaningful and useful statistical descriptors. This situation stems from galaxy structures corresponding to density fluctuations that are too large in amplitude and too extended in space to be self-averaging on such large scales inside the sample volumes: galaxy distribution is inhomogeneous up to the largest scales, i.e. Mpc/h probed by the SDSS samples. We show that cosmological corrections, such as K-corrections and standard evolutionary corrections, do not qualitatively change the relevant behaviors. We consider in detail the relation between several statistical measurements generally used to quantify galaxy fluctuations and the scale-length analysis by discussing how the breaking of self-averaging properties makes it impossible to have a reliable estimation of average fluctuations amplitude, variance, and correlations for Mpc/h. Finally we show that the large-amplitude galaxy fluctuations observed in the SDSS samples are at odds with the predictions of the standard ΛCDM model of structure formation.
Key words: cosmology: observations / large-scale structure of Universe
© ESO, 2009
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.