Issue |
A&A
Volume 507, Number 3, December I 2009
|
|
---|---|---|
Page(s) | L53 - L56 | |
Section | Letters | |
DOI | https://doi.org/10.1051/0004-6361/200913181 | |
Published online | 04 November 2009 |
Letter to the Editor
Simulation of a flux emergence event and comparison with observations by Hinode*
1
Max-Planck-Institut für Sonnensystemforschung, Max-Planck-Strasse 2, 37191 Katlenburg-Lindau, Germany e-mail: yelles@mps.mpg.de
2
Instituto de Astrofísica de Canarias, C/ vía Láctea, s/n, 38205 La Laguna (Tenerife), Spain
3
Lockheed Martin Solar and Astrophysics Laboratory, Palo Alto, CA 94304, USA
4
School of Space Research, Kyung Hee University, Yongin, Gyeonggi 446-701, Korea
Received:
26
August
2009
Accepted:
28
October
2009
Aims. We study the observational signature of flux emergence in the photosphere using synthetic data from a 3D MHD simulation of the emergence of a twisted flux tube.
Methods. Several stages in the emergence process are considered. At every stage we compute synthetic Stokes spectra of the two iron lines Fe I 6301.5 Å and Fe I 6302.5 Å and degrade the data to the spatial and spectral resolution of Hinode's SOT/SP. Then, following observational practice, we apply Milne-Eddington-type inversions to the synthetic spectra in order to retrieve various atmospheric parameters and compare the results with recent Hinode observations.
Results. During the emergence sequence, the spectral lines sample different parts of the rising flux tube, revealing its twisted structure. The horizontal component of the magnetic field retrieved from the simulations is close to the observed values. The flattening of the flux tube in the photosphere is caused by radiative cooling, which slows down the ascent of the tube to the upper solar atmosphere. Consistent with the observations, the rising magnetized plasma produces a blue shift of the spectral lines during a large part of the emergence sequence.
Key words: Sun: magnetic fields / Sun: photosphere / magnetohydrodynamics (MHD)
© ESO, 2009
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.