Issue |
A&A
Volume 507, Number 2, November IV 2009
|
|
---|---|---|
Page(s) | L21 - L24 | |
Section | Letters | |
DOI | https://doi.org/10.1051/0004-6361/200913228 | |
Published online | 27 October 2009 |
Letter to the Editor
Diffusive shock acceleration to relativistic energies in the solar corona
1
University of Helsinki, Department of Physics, Finland e-mail: arto.sandroos@helsinki.fi
2
Finnish Meteorological Institute, Helsinki, Finland
Received:
2
September
2009
Accepted:
19
October
2009
Aims. We study the effect of magnetic geometry on the efficiency of diffusive shock acceleration
(DSA) of protons in the solar corona with emphasis on conditions that may lead to the formation of so-called
ground level enhancements (GLEs) where the protons are accelerated into energies 1 GeV.
Methods. We use Monte Carlo simulations of DSA in a semirealistic large scale coronal magnetic field near a bipolar active region. This active region is assumed to be the source region of a coronal mass ejection (CME) driving a shock wave in the corona. The shock geometry evolves in time, and the obliquity angle goes through a wide range of values from perpendicular to quasi-parallel. We consider the effect of the evolving magnetic geometry on the acceleration efficiency in five selected field lines.
Results. In most of the considered field lines the maximum proton energies are of the order of 100 MeV, which is rather typical for gradual solar energetic particle (SEP) events. We find that the DSA can be more effective on field lines where the shock starts out by being oblique and gradually turns quasi-perpendicular than on field lines where the shock starts perpendicularly.
Key words: acceleration of particles / shock waves / Sun: activity / Sun: coronal mass ejections (CMEs) / Sun: particle emission
© ESO, 2009
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.