Issue |
A&A
Volume 506, Number 3, November II 2009
|
|
---|---|---|
Page(s) | 1351 - 1365 | |
Section | Stellar atmospheres | |
DOI | https://doi.org/10.1051/0004-6361/200911780 | |
Published online | 27 August 2009 |
Radiative hydrodynamics simulations of red supergiant stars
I. interpretation of interferometric observations
1
Max-Planck-Institut für Astrophysik, Karl-Schwarzschild-Str. 1, Postfach 1317, 85741 Garching b. München, Germany e-mail: chiavass@mpa-garching.mpg.de
2
GRAAL, Université de Montpellier II - IPM, CNRS, Place Eugéne Bataillon, 34095 Montpellier Cedex 05, France
3
Department of Physics and Astronomy, Division of Astronomy and Space Physics, Uppsala University, Box 515, 75120 Uppsala, Sweden
4
Centre de Recherche Astrophysique de Lyon, UMR 5574: CNRS, Université de Lyon, École Normale Supérieure de Lyon, 46 allée d'Italie, 69364 Lyon Cedex 07, France
Received:
3
February
2009
Accepted:
14
July
2009
Context. It has been proposed that convection in red supergiant (RSG) stars produces large-scale granules causing observable surface inhomogeneities. This convection is also extremely vigorous and is suspected to be one of the main causes of mass-loss in RSGs. It should thus be understood in detail. Evidence has accumulated of asymmetries in the photospheres of RSGs, but detailed studies of granulation are still lacking. Interferometric observations provide an innovative way of addressing this question, but they are still often interpreted using smooth symmetrical limb-darkened intensity distributions, or simple, spotted, ad hoc models.
Aims. We explore the impact of the granulation on visibility curves and closure phases using the radiative transfer code OPTIM3D. We simultaneously assess how 3D simulations of convection in RSG with CO5BOLD can be tested by comparing with these observations.
Methods. We use 3D radiative hydrodynamical (RHD) simulations of convection to compute intensity maps at various wavelengths and time, from which we derive interferometric visibility amplitudes and phases. We study their behaviour with time, position angle, and wavelength, and compare them to observations of the RSG α Ori.
Results. We provide average limb-darkening coefficients for RSGs. We describe the prospects for the detection and characterization of granulation (i.e., contrast, size) on RSGs. We demonstrate that our RHD simulations provide an excellent fit to existing interferometric observations of α Ori, in contrast to limb darkened disks. This confirms the existence of large convective cells on the surface of Betelgeuse.
Key words: stars: supergiants / stars: atmospheres / hydrodynamics / radiative transfer / techniques: interferometric
© ESO, 2009
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.