Issue |
A&A
Volume 505, Number 1, October I 2009
|
|
---|---|---|
Page(s) | 265 - 279 | |
Section | Stellar structure and evolution | |
DOI | https://doi.org/10.1051/0004-6361/200912364 | |
Published online | 16 July 2009 |
The normal Type Ia SN 2003hv out to very late phases *,**
1
Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, 2100 Copenhagen Ø, Denmark e-mail: giorgos@dark-cosmology.dk
2
Las Campanas Observatory, Carnegie Observatories, Casilla 601, La Serena, Chile
3
The Oskar Klein Centre, Department of Astronomy, Stockholm University, AlbaNova, 10691 Stockholm, Sweden
4
Observatories of the Carnegie Institution of Washington, 813 Santa Barbara St., Pasadena, CA 91101, USA
5
Department of Physics, Texas A&M University, College Station, TX 77843, USA
6
Department of Astronomy and Steward Observatory, University of Arizona, Tucson, AZ 85721, USA
7
Department of Astronomy, University of California, Berkeley, CA 94720-3411, USA
8
Departamento de Astronomía, Universidad de Chile, Casilla 36-D, Santiago, Chile
9
Research School of Astronomy and Astrophysics, Australian National University, Cotter Road, Weston Creek, PO 2611, Australia
10
Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, 2100 Copenhagen Ø, Denmark
11
Max-Planck-Institut für Astrophysik, Karl-Schwarzschild-Str. 1, 85741 Garching bei München, Germany
Received:
21
April
2009
Accepted:
7
July
2009
Aims. We study a thermonuclear supernova (SN), emphasizing very late phases.
Methods. An extensive dataset for SN 2003hv that covers the flux evolution from maximum light to day +786 is presented. This includes 82 epochs of optical imaging, 24 epochs of near-infrared (NIR) imaging, and 10 epochs of optical spectroscopy. These data are combined with published nebular-phase IR spectra, and the observations are compared to model light curves and synthetic nebular spectra.
Results. SN 2003hv
is a normal Type Ia supernova (SN Ia) with photometric and
spectroscopic properties consistent with its rarely observed
B-band decline-rate parameter, = 1.61 ±
0.02. The blueshift of the most isolated [Fe ii] lines in
the nebular-phase optical spectrum appears consistent with those
observed in the IR at similar epochs. At late times there
is a prevalent color evolution from the optical toward the NIR
bands. We present the latest-ever detection of a SN Ia in the NIR
in Hubble Space Telescope images. The study of the
ultraviolet/optical/infrared (UVOIR) light curve reveals that a
substantial fraction of the flux is “missing” at late times.
Between 300 and 700 days past maximum brightness, the UVOIR light
curve declines linearly following the decay of radioactive 56Co,
assuming full and instantaneous positron trapping. At 700 days we
detect a possible slowdown of the decline in optical-bands, mainly
in the V-band.
Conclusions. The data are incompatible with a dramatic infrared catastrophe (IRC). However, the idea that an IRC occurred in the densest regions before 350 days can explain the missing flux from the UVOIR wavelengths and the flat-topped profiles in the NIR. We argue that such a scenario is possible if the ejecta are clumpy. The observations suggest that positrons are most likely trapped in the ejecta.
Key words: supernovae: general / supernovae: individual: SN 2003hv
© ESO, 2009
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.