Issue |
A&A
Volume 504, Number 3, September IV 2009
|
|
---|---|---|
Page(s) | 883 - 890 | |
Section | Interstellar and circumstellar matter | |
DOI | https://doi.org/10.1051/0004-6361/200911797 | |
Published online | 24 July 2009 |
Turbulent driving scales in molecular clouds
1
Astrophysics Group, School of Physics, University of Exeter, Stocker Road, Exeter, EX4 4QL, UK e-mail: brunt@astro.ex.ac.uk
2
Department of Astronomy, University of Massachusetts at Amherst, 710 North Pleasant Street, Amherst, MA 01003, USA e-mail: heyer@astro.umass.edu
3
Department of Astrophysics, American Museum of Natural History, 79th Street and Central Park West, New York, NY 10024-5192, USA e-mail: mordecai@amnh.org
Received:
5
February
2009
Accepted:
22
July
2009
Context. Supersonic turbulence in molecular clouds is a dominant agent that strongly affects the clouds' evolution and star formation activity. Turbulence may be initiated and maintained by a number of processes, acting at a wide range of physical scales. By examining the dynamical state of molecular clouds, it is possible to assess the primary candidates for how the turbulent energy is injected.
Aims. The aim of this paper is to constrain the scales at which turbulence is driven in the molecular interstellar medium, by comparing simulated molecular spectral line observations of numerical magnetohydrodynamic models and molecular spectral line observations of real molecular clouds.
Methods. We use principal component analysis, applied to both models and observational data, to extract a quantitative measure of the driving scale of turbulence.
Results. We find that only models driven at large scales (comparable to, or exceeding, the size of the cloud) are consistent with observations. This result applies also to clouds with little or no internal star formation activity.
Conclusions. Astrophysical processes acting on large scales, including supernova-driven turbulence, magneto-rotational instability, or spiral shock forcing, are viable candidates for the generation and maintenance of molecular cloud turbulence. Small-scale driving by sources internal to molecular clouds, such as outflows, can be important on small scales, but cannot replicate the observed large-scale velocity fluctuations in the molecular interstellar medium.
Key words: magnetohydrodynamics (MHD) / turbulence / techniques: spectroscopic / ISM: molecules / kinematics and dynamics / radio lines: ISM
© ESO, 2009
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.