Issue |
A&A
Volume 502, Number 1, July IV 2009
|
|
---|---|---|
Page(s) | 283 - 301 | |
Section | Stellar atmospheres | |
DOI | https://doi.org/10.1051/0004-6361/200811533 | |
Published online | 04 June 2009 |
Searching for a link between the magnetic nature and other observed properties of Herbig Ae/Be stars and stars with debris disks*
1
Astrophysikalisches Institut Potsdam, An der Sternwarte 16, 14482 Potsdam, Germany e-mail: shubrig@aip.de
2
European Southern Observatory, Casilla 19001, Santiago 19, Chile
3
INAF-Osservatorio Astronomico di Palermo, Piazza del Parlamento 1, 90134 Palermo, Italy
4
European Southern Observatory, Karl-Schwarzschild-Str. 2, 85748 Garching, Germany
5
Eureka Scientific, 2452 Delmer, Suite 100, Oakland, CA 96002, USA
6
Pulkovo Observatory, Saint-Petersburg, 196140, Russia
7
Isaac Newton Institute of Chile, Saint-Petersburg Branch, Russia
8
Departamento de Física y Astronomía, Facultad de Ciencias, Universidad de Valparaíso, Chile
9
Astrophysics Science Division, NASA's Goddard Space Flight Center, Greenbelt, MD 20771, USA
Received:
16
December
2008
Accepted:
27
April
2009
Context. Recently, evidence for the presence of weak magnetic fields in Herbig Ae/Be stars has been found in several studies.
Aims. We seek to expand the sample of intermediate-mass pre-main sequence stars with circular polarization data to measure their magnetic fields, and to determine whether magnetic field properties in these stars are correlated with mass-accretion rate, disk inclination, companions, silicates, PAHs, or show a correlation with age and X-ray emission as expected for the decay of a remnant dynamo.
Methods.
Spectropolarimetric observations of 21 Herbig Ae/Be stars and
six debris disk stars have been obtained at the European Southern Observatory with FORS 1
mounted on the 8 m Kueyen telescope of the VLT. With
the GRISM 600B in the wavelength range 3250–6215 Å we were able
to cover all hydrogen Balmer lines from Hβ to the Balmer jump.
In all observations a slit width of 04 was used to obtain a spectral resolving power
of R ≈ 2000.
Results.
Among the 21 Herbig Ae/Be stars studied, new detections of a magnetic field were achieved in six stars.
For three Herbig Ae/Be stars, we confirm previous magnetic field detections.
The largest longitudinal magnetic field,
= -454±42 G, was
detected in the Herbig Ae/Be star HD 101412 using hydrogen lines.
No field detection
at a significance level of 3σ was achieved in stars with debris disks.
Our study does not indicate any correlation of the strength of the longitudinal magnetic field
with disk orientation, disk geometry, or the presence
of a companion.
We also do not see any simple dependence on the mass-accretion rate.
However, it is likely that the range of observed field values qualitatively supports
the expectations from magnetospheric accretion models giving support for dipole-like field geometries.
Both the magnetic field strength and the X-ray emission show hints of a decline with age
in the range of ~2–14 Myr probed by our sample, supporting a dynamo mechanism
that decays with age.
However, our study of rotation does not show any obvious trend of the strength of the longitudinal
magnetic field with rotation period.
Furthermore, the stars seem to obey the
universal power-law relation between magnetic flux and X-ray luminosity established for the Sun
and main-sequence active dwarf stars.
Key words: polarization / stars: pre-main-sequence / stars: circumstellar matter / stars: magnetic fields / X-rays: stars / stars: coronae
© ESO, 2009
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.