Issue |
A&A
Volume 501, Number 3, July III 2009
|
|
---|---|---|
Page(s) | 899 - 905 | |
Section | Extragalactic astronomy | |
DOI | https://doi.org/10.1051/0004-6361/200810404 | |
Published online | 29 April 2009 |
Research Note
Suzaku measurement of Abell 2204's intracluster gas temperature profile out to 1800 kpc
1
Argelander Institute for Astronomy, Bonn University, Auf dem Hügel 71, 53121 Bonn, Germany e-mail: thomas@reiprich.net
2
Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa, Ishikawa, 920-1192, Japan
3
Department of Physics, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo 192-0397, Japan
4
Institute of Space and Astronautical Science (ISAS/JAXA), 3-1-1 Yoshinodai, Sagamihara, Kanagawa 229-8510, Japan
5
Max-Planck-Institut für extraterrestrische Physik, 85748 Garching, Germany
6
Department of Earth and Space Science, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
Received:
17
June
2008
Accepted:
16
April
2009
Context. Measurements of intracluster gas temperatures out to large radii, where much of the galaxy cluster mass resides, are important for using clusters for precision cosmology and for studies of cluster physics. Previous attempts to measure robust temperatures at cluster virial radii have failed.
Aims. The goal of this work is to measure the temperature profile of the very relaxed symmetric galaxy cluster Abell 2204 out to large radii, possibly reaching the virial radius.
Methods. Taking advantage of its low particle background due to its low-Earth orbit, Suzaku data are used to measure the outer temperature profile of Abell 2204. These data are combined with Chandra and XMM-Newton data of the same cluster to make the connection to the inner regions, unresolved by Suzaku, and to determine the smearing due to Suzaku's point spread function.
Results. The temperature profile of Abell 2204 is determined from ~10 kpc to ~1800 kpc, close to an estimate of r200 (the approximation to the virial radius). The temperature rises steeply from below 4 keV in the very center up to more than 8 keV in the intermediate range and then decreases again to about 4 keV at the largest radii. Varying the measured particle background normalization artificially by ±10% does not change the results significantly. Several additional systematic effects are quantified, e.g., those due to the point spread function and astrophysical fore- and backgrounds. Predictions for outer temperature profiles based on hydrodynamic simulations show good agreement. In particular, we find the observed temperature profile to be slightly steeper but consistent with a drop of a factor of 0.6 from 0.3 r200 to r200, as predicted by simulations.
Conclusions. Intracluster gas temperature measurements up to r200 seem feasible with Suzaku, after a careful analysis of the different background components and the effects of the point spread function. Such measurements now need to be performed for a statistical sample of clusters. The result obtained here indicates that numerical simulations capture the intracluster gas physics well in cluster outskirts.
Key words: X-rays: galaxies: clusters / galaxies: clusters: individual: Abell 2204
© ESO, 2009
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.