Issue |
A&A
Volume 500, Number 3, June IV 2009
|
|
---|---|---|
Page(s) | 1249 - 1252 | |
Section | Planets and planetary systems | |
DOI | https://doi.org/10.1051/0004-6361/200811367 | |
Published online | 29 April 2009 |
Research Note
Oligarchic planetesimal accretion and giant planet formation II
1
Facultad de Ciencias Astronómicas y Geofísicas, Universidad Nacional de La Plata, Paseo del Bosque s/n (B1900FWA) La Plata, Argentina e-mail: [afortierp;abrunini;obenvenu]@fcaglp.unlp.edu.ar
2
Instituto de Astrofísica de La Plata, IALP, CCT-CONICET-UNLP, Argentina
Received:
17
November
2008
Accepted:
4
March
2009
Aims. The equation of state calculated by Saumon and collaborators has been adopted in most core-accretion simulations of giant-planet formation performed to date. Since some minor errors have been found in their original paper, we present revised simulations of giant-planet formation that considers a corrected equation of state.
Methods. We employ the same code as Fortier and collaborators in repeating our previous simulations of the formation of Jupiter.
Results. Although the general conclusions of Fortier and collaborators remain valid, we obtain significantly lower core masses and shorter formation times in all cases considered.
Conclusions. The minor errors in the previously published equation of state have been shown to affect directly the adiabatic gradient and the specific heat, causing an overestimation of both the core masses and formation times.
Key words: planets and satellites: formation / solar system: formation / methods: numerical
© ESO, 2009
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.