Issue |
A&A
Volume 500, Number 2, June III 2009
|
|
---|---|---|
Page(s) | 735 - 747 | |
Section | Extragalactic astronomy | |
DOI | https://doi.org/10.1051/0004-6361/200811578 | |
Published online | 29 April 2009 |
New constraints on the chemical evolution of the dwarf spheroidal galaxy Leo I from VLT spectroscopy*
1
Osservatorio Astronomico di Padova, INAF, vicolo dell'Osservatorio 5, 35122 Padova, Italy e-mail: [marco.gullieuszik;enrico.held]@oapd.inaf.it
2
European Southern Observatory, Casilla 19001, Santiago 19, Chile e-mail: isaviane@eso.org
3
Joint Astronomy Centre, 660 N. A'ohoku Place, University Park, Hilo, HI 96720, USA e-mail: l.rizzi@jach.hawaii.edu
Received:
23
December
2008
Accepted:
27
March
2009
We present the spectroscopy of red giant stars in the dwarf spheroidal galaxy Leo I, aimed at further constraining its chemical enrichment history. Intermediate-resolution spectroscopy in the triplet spectral region was obtained for 54 stars in Leo I using FORS2 at the
ESO Very Large Telescope. The equivalent widths of
triplet lines were used to derive the metallicities of the target stars on the [Fe/H] scale of Carretta & Gratton, as well as on a
scale tied to the global metal abundance, [M/H]. The metallicity distribution function for red giant branch (RGB) stars in Leo I is confirmed to be very narrow, with mean value [M/H]
-1.2 and dispersion
. By evaluating all contributions to the measurement error, we provide a constraint to the intrinsic metallicity dispersion,
. We find a few metal-poor stars (whose metallicity values depend on the adopted extrapolation of the existing calibrations), but in no case are stars more metal-poor than [Fe/H] = -2.6. Our measurements provide a hint of a shallow metallicity gradient of -0.27 dex Kpc-1 among Leo I red giants. The gradient disappears if our data are combined with previous spectroscopic datasets in the literature, so that any firm conclusions about its presence must await new data, particularly in the outer regions. By combining the metallicities of the target stars with their photometric data, we provide age estimates and an age-metallicity
relation for a subset of red giant stars in Leo I. Our age estimates indicate a rapid initial enrichment, a slowly rising metal abundance – consistent with the narrowness of the metallicity
distribution – and an increase of
dex in the last few Gyr. The estimated ages also suggest a radial age gradient in the RGB stellar populations, which agrees with the conclusions of a parallel study of asymptotic giant branch stars in Leo I from near-infrared photometry. Together, these studies provide the first evidence of stellar population gradients in Leo I.
Key words: galaxies: dwarf / galaxies: individual: Leo I / stars: abundances / Local Group / galaxies: stellar content
© ESO, 2009
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.