Issue |
A&A
Volume 499, Number 2, May IV 2009
|
|
---|---|---|
Page(s) | 515 - 527 | |
Section | Interstellar and circumstellar matter | |
DOI | https://doi.org/10.1051/0004-6361/200911730 | |
Published online | 25 March 2009 |
Circumstellar molecular line emission from S-type AGB stars: mass-loss rates and SiO abundances*
1
Department of Astronomy, Stockholm University, AlbaNova University Center, 10691 Stockholm, Sweden e-mail: sofia@astro.su.se
2
Onsala Space Observatory, 43992 Onsala, Sweden
Received:
26
January
2009
Accepted:
16
March
2009
Aims. The main aim is to derive reliable mass-loss rates and circumstellar SiO abundances for a sample of 40 S-type AGB stars based on new multi-transitional CO and SiO radio line observations. In addition, the results are compared to previous results for M-type AGB stars and carbon stars to look for trends with chemical type.
Methods. The circumstellar envelopes are assumed to be spherically symmetric and formed by a constant mass-loss rate. The mass-loss rates are estimated from fitting the CO observations using a non-local, non-LTE radiative transfer code based on the Monte Carlo method. In the excitation analysis, the energy balance equation is solved self-consistently simultaneously as the radiative transfer and the temperature structure of the gas is derived. Effects of dust grains are also included in the molecular excitation analysis. Once the physical properties of the circumstellar envelopes are determined, the same radiative transfer code is used to model the observed SiO lines in order to derive circumstellar abundances and the sizes of the SiO line-emitting regions.
Results. We have estimated mass-loss rates of 40 S-type AGB stars and find that the derived mass-loss rates have a distribution that resembles those previously derived for similar samples of M-type AGB stars and carbon stars. The estimated mass-loss rates also correlate well with the corresponding expansion velocity of the envelope, in accordance with results for M-type AGB stars and carbon stars. In all, this indicates that the mass loss is driven by the same mechanism in all three chemical types of AGB stars. In addition, we have estimated the circumstellar fractional abundance of SiO relative to H2 in 26 of the sample S-type AGB stars. The derived SiO abundances are, on average, about an order of magnitude higher than predicted by stellar atmosphere thermal equilibrium chemistry, indicating that non-equilibrium chemical processes determines the abundance of SiO in the circumstellar envelope. Moreover, a comparison with the results for M-type AGB stars and carbon stars show that for a certain mass-loss rate, the circumstellar SiO abundance seems independent (although with a large scatter) of the C/O-ratio.
Conclusions. In our comparison of S-type AGB stars with carbon stars and M-type AGB stars, we find no large differences in circumstellar physical properties or SiO abundances depending on the chemical type of the star.
Key words: stars: AGB and post-AGB / stars: abundances / stars: carbon / stars: late-type / stars: mass-loss
© ESO, 2009
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.