Issue |
A&A
Volume 499, Number 2, May IV 2009
|
|
---|---|---|
Page(s) | 439 - 453 | |
Section | Extragalactic astronomy | |
DOI | https://doi.org/10.1051/0004-6361/200911719 | |
Published online | 16 April 2009 |
Rise and fall of the X-ray flash 080330: an off-axis jet?*
1
INAF – Osservatorio Astronomico di Brera, via E. Bianchi 46, 23807 Merate (LC), Italy e-mail: guidorzi@fe.infn.it
2
Astrophysics Research Institute, Liverpool John Moores University, Twelve Quays House, Birkenhead CH41 1LD, UK
3
Dipartimento di Fisica, Università di Ferrara, via Saragat 1, 44100 Ferrara, Italy
4
Max-Planck-Institut für extraterrestrische Physik, 85740 Garching, Germany
5
Centre for Astrophysics Research, University of Hertfordshire, College Lane, Hatfield, Herts AL10 9AB, UK
6
Mullard Space Science Laboratory/UCL, Holmbury St Mary, Dorking, Surrey RH5 6NT, UK
7
Observatoire de Haute-Provence, 04870 Saint-Michel l'Observatoire, France
8
CESR, Observatoire Midi-Pyrénées, CNRS, Université de Toulouse, BP 4346, 31028 Toulouse Cedex 04, France
9
Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Juliane Maries vej 30, 2100 København Ø, Denmark
10
Yunnan Observatory, National Astronomical Observatories, Chinese Academy of Sciences, PO Box 110, Kunming, Yunnan Province 650011, PR China
11
Centre for Astrophysics and Cosmology, Science Institute, University of Iceland, Dunhagi 5, IS 107 Reykjavik, Iceland
12
Dipartimento di Fisica, Università di Milano-Bicocca, piazza delle Scienze 3, 20126 Milano, Italy
13
INAF – Osservatorio Astronomico di Roma, via Frascati 33, 00040 Monteporzio (RM), Italy
14
Faculty of Mathematics and Physics, University of Ljubljana, Jadranska 19, 1000 Ljubljana, Slovenia
15
Department of Physics and Astronomy, University of Leicester, Leicester LE1 7RH, UK
16
NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA
Received:
24
January
2009
Accepted:
8
March
2009
Context. X-ray flashes (XRFs) are a class of gamma-ray bursts (GRBs) with a peak energy of the time-integrated spectrum, Ep, typically below 30 keV, whereas classical GRBs have Ep of a few hundreds of keV. Apart from Ep and the systematically lower luminosity, the properties of XRFs, such as their duration or spectral indices, are typical of the classical GRBs. Yet, the nature of XRFs and their differences from GRBs are not understood. In addition, there is no consensus on the interpretation of the shallow decay phase observed in most X-ray afterglows of both XRFs and GRBs.
Aims. We examine in detail the case of XRF 080330 discovered by Swift at redshift 1.51. This burst is representative of the XRF class and exhibits an X-ray shallow decay. The rich broadband (from NIR to UV) photometric data set we collected during this phase makes it an ideal candidate for testing the off-axis jet interpretation proposed to explain both the softness of XRFs and the shallow decay phase.
Methods. We present prompt γ-ray, early and late NIR/visible/UV and X-ray observations of the XRF 080330. We derive a spectral energy distribution from NIR to X-ray bands across the shallow/plateau phase and describe the temporal evolution of the multi-wavelength afterglow within the context of the standard afterglow model.
Results. The multiwavelength evolution of the afterglow is achromatic from ~102 s to ~8104 s. The energy spectrum from NIR to X-ray is reproduced well by a simple power-law, , with = 0.79±0.01 and negligible rest-frame dust extinction. The light curve can be modelled by either a piecewise power-law or the combination of a smoothly broken power law with an initial rise up to ~600 s, a plateau lasting up to ~2 ks, followed by a gradual steepening to a power-law decay index of ~2 until 82 ks. At this point, a bump appears to be modelled well with a second component, while the corresponding optical energy spectrum, , reddens by = 0.26±0.06.
Conclusions. A single-component jet viewed off-axis can explain the light curve of XRF 080330, the late-time reddening being due to the reverse shock of an energy injection episode and its being an XRF. Other possibilities, such as the optical rise marking the pre-deceleration of the fireball within a wind environment, cannot be excluded definitely, but appear to be contrived. We exclude the possibility of a dust decreasing column density being swept up by the fireball as explaining the rise of the afterglow.
Key words: gamma rays: bursts / X-rays: individual: XRF 080330
© ESO, 2009
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.