Issue |
A&A
Volume 498, Number 1, April IV 2009
|
|
---|---|---|
Page(s) | 147 - 159 | |
Section | Interstellar and circumstellar matter | |
DOI | https://doi.org/10.1051/0004-6361/200810902 | |
Published online | 24 February 2009 |
Spitzer-IRAC GLIMPSE of high mass protostellar objects*
II. SED modelling of a bona fide sample
1
Centro de Astrofísica da Universidade do Porto, Rua das Estrelas, 4150-762 Porto, Portugal e-mail: [jgrave;nanda]@astro.up.pt
2
Departamento de Matemática Aplicada da Faculdade de Ciências da Universidade do Porto, Portugal
Received:
2
September
2008
Accepted:
12
January
2009
Context. In a previous work (Paper I, Kumar & Grave, 2007, A&A, 472, 155) a sample of 380 HMPO targets was studied using the GLIMPSE point source catalog and images. A colour–magnitude analysis of the point sources resulted in the identification of infrared counterparts (IRC) of the (sub)mm cores of HMPO candidates which were considered bona fide targets.
Aims. We aim to estimate and analyse the physical properties of the infrared counterparts of HMPOs by comparing their spectral energy distributions (SED) with those predicted by radiative transfer accretion models of YSOs.
Methods. The SED of 68 IRCs are extended beyond the GLIMPSE photometry to the possible limits, from the near-infrared to the millimetre wavelengths, by using the 2MASS, GLIMPSE version 2.0 catalogs, MSX, IRAS and some single dish (and interferometric) (sub)mm data. An online SED fitting tool that uses 2D radiative transfer accretion models of YSOs is employed to fit the observed SED to obtain various physical parameters.
Results. The SED of IRCs were fitted by models of massive protostars with a
range of masses between 5–42 and ages between 103 and
106 years. The median mass and age are 10
and 104 yrs.
The observed data favours protostars of low effective
temperatures (4000–1000 K) with correspondingly large effective
photospheres (2–200
) for the observed luminosities. The
envelopes are large with a mean size of ~0.2–0.3 pc and show a
distribution that is very similar to the distribution of the sizes
of 8 μm nebulae discussed in Paper I. The estimated envelope
accretion rates are high with a mean value of 10-3
/yr and
show a power law dependence on mass with an exponent of 2,
suggesting spherical accretion at those scales. Disks are found to
exist in most of the sources with a mean mass of
.
Conclusions. The observed infrared-millimetre SED of the infrared counterparts of HMPOs are successfully explained with an YSO accretion model. The modelled sources mostly represent proto-B stars although some of them could become O stars in the future. We demonstrate that many of these results may represent a realistic picture of massive star formation, despite some of the discrepant results which may be an effect of the assumptions within the models.
Key words: stars: formation / stars: evolution / ISM: HII regions / infrared: stars
© ESO, 2009
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.